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Nonlinear dynamics of upward propagating flames
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We study the influence of gravity on the dynamics of upward propagating premixed flames. We show that the
role of gravity on the dispersion relation is small, but that the nonlinear effects are large. Using a Michelson
Sivashinsky equation modified with a gravity term, it can be observed that the nonlinear dynamics of the crests is
greatly influenced by gravity, as well as the final amplitude of the flame. A simple model is proposed to explain
the role of gravity on the amplitude.
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I. INTRODUCTION

The propagation of a premixed flame often leads to the
development of instabilities. The primary destabilizing effect
(Darrieus-Landau instability) [1,2] is modified, as discussed
in recent books [3,4], by stabilizing effects (thermal and
molecular diffusion within the flame) [5–7] and nonlinearities
[8]. In the usual case of downward propagating flames, gravity
is also stabilizing. We will be interested in this article in
upward propagating flames, where both effects, gravity and
Darrieus-Landau instability, participate in wrinkling the flame
front.

The problem of upward propagation of premixed flames
in a vertical tube is a classical problem. In the 1980s, soon
after a correct theory of the Darrieus-Landau instability ap-
peared [5–7], there was also an interest in upward propagating
flames. Experiments were performed [9,10] and a theoretical
article using a unimodal approximation for the flow field [11]
was published. Curiously enough, most of the studies were
performed in cases where the Rayleigh-Taylor instability is
more important than the Darrieus-Landau instability. In this
limit, it was expected that these flames approach the limit of
rising bubbles studied by Davies and Taylor [12] when the
laminar flame velocity is very low. More recent works exist
in this limit [13,14], but a recent theoretical article [15] has
however argued that rigorously the propagating flame cannot
approach a Taylor bubble even for a very low flame velocity.

Another type of approach has been also initiated in the
1980s by Rakib and Sivashinsky [16] (see also [17]). Instead
of considering the laminar flame velocity as a perturbation
of a Taylor bubble, this limit corresponds to relatively large
laminar flame velocities, so that the gravity effect can be seen

as a perturbation of the (Michelson) Sivashinsky equation of
premixed flames [8].

The same type of equation has also been used for down-
ward propagating flames [18–20], and recently this type of
equation has been compared to downward propagating flames
in a Hele-Shaw cell [21]. It was shown that, although the
gravity effect seems small for the linear development of
the instability, it helps explain some nonlinear effects, such as
the creation of new cells on the front. These creations of new
cells cannot be observed with the Sivashinsky equation with-
out gravity term [22,23]. A recent study on the role of gravity
in the Michelson-Sivashinsky equation can be found in [24].

At large time of propagation, nonlinear effects have a lead-
ing role in the front dynamics. Several theoretical analyses of
the nonlinear dynamics of flame fronts have been published
either in the limit of small front amplitude [25–27], with the
on-shell description of flame fronts [28,29], or in the limit
of small gas expansion through the flame E = ρu/ρb → 1
[8,30,31]. The latter type of analysis leads to the weakly
nonlinear Sivashinsky equation (or sometimes Michelson-
Sivashinsky equation):

φt + uA

2
φ2

x = 4σM

kc

(
φxx

kc
+ I (φ, x)

)
, (1)

where φ is the local vertical coordinate of the flame front,
x is the lateral coordinate, and the position of the front is
[x, φ(x, t )]. φx and φxx are the first and second derivatives
with respect to x, φ2

x is the square of the first derivative, and
uA is a speed that depends on the laminar flame speed and
on the density ratio between fresh and burnt gases. σM is
the growth rate of the most amplified wavelength. kc is the
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cutoff wave number for which the disturbance amplification
due to the Darrieus-Landau effect and the damping due to
transport into the thickness of the flames cancel out. I (φ, x)
is a linear operator corresponding to multiplication by |k| in
Fourier space:

I[cos(kx)] = |k| cos(kx), I[sin(kx)] = |k| sin(kx).

We want to incorporate gravity effects into the pseudod-
ifferential Sivashinsky equation (1) in order to take their
influence into account in the late time nonlinear dynamics of
the flame. We will show in Sec. II that the dispersion relation
associated with the Sivashinsky equation can be modified in
the presence of gravity in the form

σ (k) = 4σM

kc

(
|k| − k2

kc

)
+ G, σ (k = 0) = 0, (2)

where k and σ are respectively the wave number and the
growth rate and G is a parameter controlling the effect of
gravity on the dispersion relation. G is positive for upward
propagating flames. Note that the maximum growth rate is
now σM + G.

Inserting this dispersion relation into the Sivashinsky equa-
tion, the obtained equation of Rakib Sivashinsky type (MSG
later in this paper) is of the form

φt + uA

2

(
φ2

x − 〈
φ2

x

〉) = 4σM

kc

(
φxx

kc
+ I (φ, x)

)
+ G(φ − 〈φ〉),

(3)

which reduces to (1) in the limit G → 0 through a simple
change of frame of reference. Numerical experiments ob-
tained by pseudospectral integration of Eq. (3), reported in
Sec. IV, show a strongly modified dynamics (even for G �
σM) compared to the standard Sivashinsky model.

The purpose of the present work is to study this Rakib
Sivashinsky type of equation for upward propagating flames,
compare the nonlinear evolution of the front to experiments
in a Hele-Shaw cell for short times, and examine how the
behavior of the flame for long times is modified by the gravity
term.

II. DISPERSION RELATION

A dispersion relation valid for temperature-dependent dif-
fusivities has been proposed by Clavin and Garcia [7] (see also
[32]) in the form of a quadratic equation. Note that although
we will compare to experiments in a Hele-Shaw burner, we
do not present here the dispersion relation in the limit of
very small Hele-Shaw cell thickness, which can be found
in [33]. The following temperature dependence: ρD ∝ T β ,
with T being the temperature, is often used in the literature;
β is often taken to be 0.69 or 0.5. This dispersion relation
reads

A(k)σ 2 + B(k)σ + C(k) = 0, (4)

with A(k), B(k), and C(k) coefficients depending on gas
expansion E = ρu/ρb, Markstein number Ma, Froude num-
ber Fr = u2

l /gδl (where ul is the laminar flame speed and
δl = Dth

ul
the flame thickness; g is the acceleration of gravity,

taken positive for downward propagating flames), and Prandtl

number Pr:

A(k) = E + 1

E
+ E − 1

E
kδl

(
Ma − J

E

E − 1

)
,

B(k) = ulk(2 + 2Ekδl (Ma − J )),

C(k) = u2
l

{
E − 1

E

k

Frδl
+ (E − 1)

k3

km

− (E − 1)k2

[
1 + 1

EFr

(
Ma − J

E

E − 1

)]}
, (5)

where k−1
m = δl (Eβ + 3E−1

E−1 Ma − 2E
E−1 J + (2Pr − 1)H ). The

integrals J and H can be found in [7,32].
This dispersion relation includes explicitly the Froude

number, which is of course necessary in our case, where the
gravity plays an important role. Note that the buoyancy effect
is introduced through the Froude number in the term C(k)
only.

The theoretical dispersion relations are only valid for low
values of k; we have shown in [34] that a development of
the Clavin-Garcia dispersion relation (we will call this re-
lation modified Clavin-Garcia dispersion relation), valid for
k � 2π/δl and 1/Fr = O(k), gives

σ = agulk − bgk2, (6)

where positive coefficients ag and bg are functions of k includ-
ing Froude number effects.

A development leads to

ag = E

E + 1
[Sg − 1], (7)

where

Sg =
√

1 + E − 1

E
− E2 − 1

E2Frkδl

=
√

1 + E − 1

E
− g(E2 − 1)

E2u2
l k

, (8)

the relation σ = agulk is the Darrieus-Landau result with
gravity, but without Markstein number effect, and

bg = − δl ul

[(
− a2

g

E − 1

E
− 2agE + E − 1

EkFrδl

)
Ma

+ J

(
a2

g − 1

kFrδl
+ 2agE

)
− E − 1

kmδl

]/
2S. (9)

This relation between bg and the Marstein number is com-
plicated and depends on the temperature dependence of the
diffusivities through the integrals J and H . As the precision
of the reported Marskein numbers in the literature is very low
[34], we prefer in the next section to fit the value of bg.

For k = 0, the growth rate given by Eq. (6) is zero. Outside
a boundary layer very close to k = 0, let us develop the square
root in Eq. (8) (this development is not valid for extremely
small k or small laminar flame velocity). We obtain

σ = G + aulk − bgk2, σ (k = 0) = 0, (10)
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where a = E
E+1 [S − 1], S =

√
1 + E − 1

E , and the value of G
is given by

G = −1

2

(E − 1)g

EulS
, (11)

showing that the dispersion relation is of the form given in
Eq. (2). Note that for upward propagating flames we have
taken g to be negative, so that in this case G is positive. Numer-
ically however G is small (much smaller than the maximum
growth rate) for typical values of the laminar flame speed
and gas expansion. We will show in the next sections that,
although small in the linear regime, G plays an important role
in the nonlinear dynamics of the flame and its final amplitude.

III. COMPARISON WITH EXPERIMENTS

The dynamics described by (3) will now be compared
to experimental flames. We use here the Hele-Shaw burner
employed in our recent studies [23,34–36]. This apparatus is
made of two borosilicate glass plates (1500 × 500 × 5 mm)
oriented vertically and separated by a 3.5 mm gap. The burner
cavity is opened at the bottom and closed on the two vertical
sides, the gas supply being placed at the top of the cell. For
the experiments presented in this article, the burner is filled
with a propane-air mixture with equivalence ratio ϕ = 0.9
through a flow line positioned at the top of the experimental
facility and controlled by two Bronkhorst EL-Flow series
mass-flow regulators. Before flame ignition, the flow rate of
the mixture is adjusted so that the speed of the flow at the
bottom outlet of the burner is slightly in excess to the flame
speed. This technique allows the flame to remain anchored at
the bottom of the burner as a two-dimensional (2D) Bunsen
flame. After ignition of the flame, the mixture flow is then
suddenly stopped and the flame starts its upward propagation.
Experiments are performed with a forcing using plates with a
sinusoidal shape at the bottom allowing one to force modes
of different wavelengths and to measure their growth rates
using image analysis. The experimental values of the growth
rate are fitted with a Levenberg-Marquardt algorithm: a two-
parameter fit is performed using the modified Clavin-Garcia
formula [Eqs. (6) and (7)] (ul taken to its experimental value
in tubes), giving the two parameters (E , bg). As usual in
experiments in Hele-Shaw burners, heat losses lead to a value
of E lower than the value for flames propagating in tubes. The
results of this fit compared to experimental values of growth
rates for upward propagating flames are shown in Fig. 1.
With the growth rates being higher for upward propagating
flames compared to downward propagating flames, the mea-
sured values are generally less precise than in the downward
case. Nevertheless, Fig. 1 shows that the fit with the modified
Clavin-Garcia dispersion relation is in reasonable agreement
with the experiments.

The modified Clavin-Garcia relation shown in Fig. 1 is then
expanded according to Eq. (11) giving the value of G and the
dispersion relation used in the MSG equation. A flame front
is extracted from experiments using image processing as de-
scribed in [34,35] and is used as an initial condition φ(x, t =
0) for a direct numerical simulation of Eq. (3). The integration
is performed by a pseudospectral spatial discretization with
periodic boundary conditions using the fast Fourier trans-

FIG. 1. Experimental growth rates for an upward propagating
flame (propane-air flame with equivalence ratio ϕ = 0.9), compared
to a fit with the modified Clavin-Garcia dispersion relation (parame-
ters ul = 391 mm s−1, E = 4.21, and bg = 313.6 mm2s−1).

form library fftw [37]. The time derivatives are discretized
using first order finite differences. Details on the numerical
method are given in the Appendix. The obtained evolution
for the flame front is compared with experiment in Fig. 2. In
this figure, the experimental evolution is shown on the left
(the flame propagates upward) and the numerical solutions
on the right of the figure. A good agreement is observed during
the development of the first cells observed on the front and the
first mergings of cells. Then, as time evolves, the agreement
deteriorates, the main cause being that there is a discrepancy
close to the boundary conditions (which are of course not
periodic in the experiments). We will show in Sec. IV that
the gravity term accelerates the merging of cells.

IV. NONLINEAR EFFECTS OF THE GRAVITY TERM

We have seen in the previous section that we have a good
agreement of the MSG equation with experiments for short
times. However, it is difficult to study experimentally the late
time behavior of flame fronts in our Hele-Shaw cell. With
the width we use the flame does not reach a stationary shape
during its propagation from the bottom to the top of the cell
and there is of course the problem that, by varying the equiva-
lence ratio or the dilution, all the parameters of the dispersion
relation [Eq. (2)] are modified. So in this section we turn to
numerical simulations of the MSG equation with varying G,
with the other parameters used in the simulation being fixed to
σM = 67 s−1, kc = 0.89 mm−1, and uA = 632.7 mm s−1, and
corresponding to a propane-air flame with equivalence ratio
ϕ = 0.8 (the numerical values of the parameters are taken
from [21]). The MSG equation is solved on [0,	] with pe-
riodic boundary conditions 	 = 158 mm.

We want to know if a stationary solution is obtained for
late time for upward propagating flames and if the amplitude
[we will talk of flame brush, defined by max(φ) − min(φ),
where the maximum and minimum are taken over the width
of the front, at a given time step] depends in an important
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FIG. 2. Nonlinear evolution for an upward propagating flame (propane-air flame with equivalence ratio ϕ = 0.9). Left: experiment; right:
numerical simulation. Wavelength of initial forcing: 12.5 mm. Parameters σM = 120 s−1, kc = 1.22 mm−1, and G = 4.29 s−1. x and y are
plotted in mm. The lines seen in the figure correspond to the flame fronts at different time steps.

way on G. In Fig. 3 we show simulations of flames for
different G. Although we have included cases for negative
G and G = 0 to compare with upward propagating flames,
we present all the cases with the flame propagating from the
bottom to the top of the figure. We take as initial condition
for all cases a flame with small cells and see the different
nonlinear evolution in all four cases G = −1 s−1, G = 0 s−1,
G = 1 s−1, and G = 4 s−1. In all cases the nonlinear evolution
first leads to a merging of the initial small cells, but it can
be seen that this merging process is accelerated for upward
propagating flames and slowed for downward propagating
flames compared to the reference case G = 0. Furthermore,
although G � σM in all cases, the merging of cells is much
faster for positive G (upward propagating flames). The late

time behavior is also very different for downward or upward
propagating flames. For G = −1 s−1 we observe in agreement
with [21] that new cells are constantly created on the front;
this is probably caused by secondary instabilities of the type
reported in [20]. For G = 0 s−1 apparently no instabilities of
the curved flame are observed but the flame is very sensi-
tive to noise. For upward propagating flames G = 1 s−1 and
G = 4 s−1, the curved flame seems more robust and we ob-
serve the evolution toward a stationary solution. However, the
amplitude of the final solution (the flame brush, as defined
before) is completely changed for higher G.

In Fig. 4 the time evolution of the flame brush is plotted
for different values of G (G > 0 s−1 and G = 0 s−1, which
actually tends slowly toward a stationary solution). In this

FIG. 3. Simulations of the MSG equation with parameters σM = 67 s−1, kc = 0.89 mm−1, and from left to right G = −1 s−1, G = 0 s−1,
G = 1 s−1, and G = 4 s−1. x and y are plotted in mm. The front position is defined here as φ plus some constant such as the mean flame
position increases linearly with time (in the same way for each value of G, to make the comparison easier).
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FIG. 4. Flame brush versus time with parameters σM = 67 s−1,
kc = 0.89 mm−1, for different G. The theoretical value of the flame
brush given by Eq. (18) for G = 0 s−1 is 28.0 mm.

figure (see also Fig. 3) we can see the different mergings of the
cells at the beginning of the simulation, which correspond to
the different maxima of the flame brush versus time. Actually
this merging is not too different for the first cells (it can also be
seen in Fig. 3) but is strongly accelerated for higher values of
G when the cells become larger. At the end of the simulation,
a stationary solution is obtained but with a final amplitude
which varies almost linearly with G.

To understand this dependency of the final flame brush on
G, let us compare to the following equation already proposed
by Rakib and Sivashinsky:

φt + uA

2

(
φ2

x − 〈
φ2

x

〉) = G(φ − 〈φ〉), (12)

which is essentially the MSG equation without the Darrieus
Landau and diffusive terms, but where the gravity term has
been kept. It has been shown that a simple parabolic solution
to this equation exists on [0,	] in the steady case [16,17,38]

φ = G

2uA
(x − 	/2)2, (13)

which is easily verified by direct substitution into Eq. (12).
This leads to a flame brush:


φ = G	2

8uA
. (14)

Let us compare this flame brush to the Sivashinsky equa-
tion without gravity term. The Sivashinsky equation on [0,	]
can be rescaled to a form often used on [0, 2π ] in the follow-
ing way [23]:

τ = 8πσM

	kc
t,

X = 2π

	
x,

� = uAkcπ

2	σM
φ. (15)

FIG. 5. Flame brush for different G. Upper curve: numerical
simulations; lower curve: Eq. (19); middle curve: Eq. (20).

Equation (1) is reduced to a one parameter equation on
[0, 2π ]:

�τ + 1
2�2

X = ν�XX + I (�, X ), (16)

where 1/ν = kc/K (with K = 2π/	) is a parameter corre-
sponding to the ratio of the width of the domain to the shortest
unstable wavelength. This parameter, called the unstable
modes number, is the only nondimensional number governing
the flame dynamics when gravity is neglected. Without the
diffusive term, the Sivashinsky equation on [0, 2π ] has the
following solution for the slope [39,40]:

�X = −2/π sinh−1[1/ tan(X/2)]. (17)

There is no closed form for �; however, it can be integrated
numerically, giving the flame brush 
� on [0, 2π ] and


φ = 
�
2	σM

uAkcπ
, (18)

so we see that the Sivashinsky equation without gravity term
gives a flame brush proportional to 	, contrary to Eq. (12),
which gives a flame brush proportional to G	2. Although G
is small, for sufficiently large values of 	, the flame brush can
be modified in an important way by the gravity term; this is
what is observed in Fig. 4. Of course this reasoning is rather
qualitative, but it has been suggested in [38] that it could be
reasonable to simply add solutions to Eqs. (1) and (12), so let
us compare to numerical simulations


φ = 
�
2	σM

uAkcπ
+ G	2

8uA
. (19)

The first term of this formula is related to the solution of
the Sivashinsky equation without diffusivity, which is already
an approximation of the solution without gravity. To focus
on the effect of gravity, we can also compare to numerical
simulations


φ = 
φ(G = 0) + G	2

8uA
. (20)

In Fig. 5 the flame brushes obtained in the numerical sim-
ulations are plotted for various G, with Eqs. (19) and (20)
showing that we have a reasonable semiquantitative agree-
ment and with a 10% error associated to the Sivashinsky
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FIG. 6. Front shapes for G = 4 s−1. Upper curve: numerical sim-
ulation; lower curve: theoretical model.

equation flame brush (the number of unstable modes in the
domain is 22.4) and another 10% error associated to the grav-
ity term for our larger value G = 5 s−1. In order to give an
idea of the shapes obtained for the flame front, we compare
in Fig. 6 the shape obtained numerically for G = 4 s−1 to the
shape obtained by adding φ obtained by integrating Eq. (17)
(Sivashinsky equation without diffusivity) and the parabolic
shape of Eq. (13), showing a relatively good agreement.

To summarize, Eq. (19) contains the main effects observed
numerically, almost linear dependence of the amplitude, and
large effect of a small value of G. Furthermore, it leads to
a physical interpretation, the amplitude caused by gravity is
proportional to 	2, and the amplitude caused by the Darrieus-
Landau instability is proportional to 	. However, the fact that
Eq. (19) works well quantitatively is surprising.

For larger values of G [i.e., lower flame speeds; see
Eq. (11)] the Sivashinsky approximation will not be valid
anymore at some point and one should have to use the on-shell
method of Kazakov in [15] which is valid when the slope
becomes very large, contrary to the present work. For large
values of G, the development of the square root in Eq. (8) will
not be possible and the dispersion relation will be close to the
Rayleigh-Taylor result σ ≈ √

gk. In this case, the flame shape
will be close to a Taylor bubble [14].

V. CONCLUSION

In this article, we have studied the behavior of upward
propagating flames with a modified Sivashinsky equation in-
cluding a gravity term.

(i) We have shown that a dispersion relation of the type

σ (k) = 4σM

kc

(
|k| − k2

kc

)
+ G (21)

is obtained even for realistic gas expansion.
(ii) Inserting this dispersion relation in the modified

Sivashinsky equation, we were able to compare the nonlinear
evolution to experiments, with a good agreement.

(iii) For longer times, a numerical study showed two
effects—a large dependency of the amplitude on G and an
accelerated merging of the cells for higher values of G.

FIG. 7. Error in the amplitude versus number of Fourier modes,
in log-log scale for G = 4 s−1.

(iv) It was possible to explain qualitatively the effect of G
on the amplitude with a simple model.

The analysis, however, does not contain the limiting case of
very low laminar flame velocity, where the shape of the flame
can approach a Taylor bubble, and it would be interesting to
describe the transition of the modified Sivashinsky equation to
this regime.
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APPENDIX: DETAILS ON THE NUMERICAL METHOD

For a flame front φ we can define the spectrum (coefficients
in Fourier space) φ̂. The superscript n corresponds to the
time step n
t . The nonlinear term of the MSG equation is
computed by a pseudospectral method, i.e., first in physical
space before being transformed to the Fourier space to give
φ̂2

x

n
. The numerical scheme (first order in time) is

φ̂n+1 − φ̂n


t
+ (uA/2)φ̂2

x

n = σ (k)φ̂n+1, (A1)

where σ (k) is the dispersion relation given in Eq. (2).
This numerical scheme has the usual properties of Fourier

spectral methods, no linear system to solve although the
scheme is implicit on the linear terms, and high precision (ex-
ponential convergence for smooth functions (see Boyd [41],
Sec. 2.3) for the spatial derivatives. Nevertheless, the gravity
term leads to very stiff cusps, very close to a slope discontinu-
ity, where the spectrum decreases only algebraically in 1/N2,
where N is the number of Fourier modes, as discussed in the
book of Boyd [41], Sec. 2.2.

We give in Fig. 7 the error, defined as the difference of
the amplitude of the stationary solutions for G = 4 s−1 (see
Figs. 5 and 6) (with simulations performed with a time step

t = 10−5 s, as in the rest of the paper) for different values
of N , with the amplitude for N = 8192 (53.846 mm). Al-
though the error decreases slowly with N and there is some
noise, it can be seen that the error is smaller than 10−3 mm
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for a large number of Fourier modes. We use usually 4096
modes in the simulations presented in this paper. Naturally,
as the 1D MSG equation describes the same phenomena as

a 2D direct numerical simulation, the calculations are much
less expensive than with a 2D DNS, such as in the work of
Higuera [14].
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