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Many elastic structures exhibit rapid shape transitions between two possible equilibrium states:
umbrellas become inverted in strong wind and hopper popper toys jump when turned inside out. This
snap through is a general motif for the storage and rapid release of elastic energy, and it is exploited by
many biological and engineered systems from the Venus flytrap to mechanical metamaterials. Shape
transitions are known to be related to the type of bifurcation the system undergoes, however, to date, there is
no general understanding of the mechanisms that select these bifurcations. Here we analyze numerically
and analytically two systems proposed in recent literature in which an elastic strip, initially in a buckled
state, is driven through shape transitions by either rotating or translating its boundaries. We show that the
two systems are mathematically equivalent, and identify three cases that illustrate the entire range of
transitions described by previous authors. Importantly, using reduction order methods, we establish the
nature of the underlying bifurcations and explain how these bifurcations can be predicted from geometric
symmetries and symmetry-breaking mechanisms, thus providing universal design rules for elastic shape
transitions.
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Bistability and snap-through transitions are key phenom-
ena in many biological [1,2] and manmade [3,4] systems.
Bistability refers to a system with two stable equilibrium
states. Snap through occurs when a system is in an
equilibrium state that becomes unstable or suddenly dis-
appears, as a control parameter is varied. Familiar examples
range from the Venus flytrap [1] to children’s toys [3] and
ancient catapults [5]. Mechanical metamaterials, whose
behavior is governed by their geometric structure rather
than elastic properties, can be designed to exploit these
instabilities to induce shape transitions and switch between
multiple modes of functionality [6].
Elastic strips of length L, whose ends are first brought

together by a distance ΔL to cause the strip to buckle into
one of two stable shapes [Fig. 1(a), movie S1 in the
Supplemental Material [7] ], then driven by boundary
actuation, provide an intuitive system to demonstrate shape
transitions (Figs. 1 and 2, movies S2 and S3 [7]) [4,8].
Starting from the Euler-buckled strip with clamped-
clamped (CC) boundary conditions (BCs), when both ends
are rotated symmetrically and held at a nonzero angle α,
one equilibrium takes an “inverted” shape while the other
maintains its “natural” shape. A larger rotation causes the
inverted shape to snap to the natural shape. Rotating only
one end also creates a violent snap through, albeit of
different character [4]. A clamped-hinged (CH) strip with
the hinged end free to rotate in place and the clamped end
sheared by a distance d in the direction transverse to the
buckled shape exhibits snap through [8]. A similar setup
with CC BCs leads to graceful merging of the two
equilibrium states.

Despite the relative simplicity of realizing these tran-
sitions experimentally [4,8], an understanding of how
shape transitions are selected remains lacking. In a beau-
tiful analysis, [4] showed that snap through in asymmetric
BCs arises from a saddle-node bifurcation and argued that
in the case of symmetric BCs, it results from a subcritical
pitchfork bifurcation, without explaining what leads to this
change in the character of the bifurcation as BCs change. In
[8], the authors alluded to similarities between their system
and that of [4]. However, to date, no general theory exists
for designing systems that achieve or avoid a specific type
of transition. Here, we combine numerical and analytical
methods to reveal the mechanisms governing shape tran-
sitions in boundary-actuated elastic strips, and we prove
that the two systems in [4,8] are equivalent. Importantly, to
predict the type of bifurcation and establish design rules for
creating a desired shape transition, we show that these
transitions are governed by geometric symmetries.
Symmetry is one of the most fundamental concepts in

physics. Symmetries shape the energy landscape and
govern the equilibrium configurations the system can
adopt. Broken symmetries are often invoked to explain
transitions in a range of physical systems from condensed
matter physics [16] to quantum field theory [17], turbulence
theory [18], fluid dynamics [19], biological locomotion
[20,21], and combustion phenomena [22]. Simple one-
dimensional (1D) examples from bifurcation theory show
that a broken symmetry can turn a graceful pitchfork bifur-
cation into a violent saddle-node bifurcation (Supplemental
Material [7], Sec. S1), [9]. Extending this understanding to
infinite-dimensional systems is challenging to researchers
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and educators alike. The understanding we develop for
elastic strips could thus serve as an educational tool to
illustrate the role of symmetry breaking in the bifurcation of
continuum systems.

We investigate the bifurcation behavior of the elastic
strips introduced in [4,8] numerically (Figs. 1 and 2), by
leveraging the three-dimensional (3D) Cosserat theory
[23], and its discrete counterpart, the discrete elastic rod
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FIG. 2. Boundary actuation and bifurcation diagrams from (quasistatically) rotating one or both clamped ends in (a) asymmetric,
(b) symmetric, and (c) antisymmetric fashion. [(d)–(f)] Midpoint deflection as a function of bifurcation parameter μ ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L=ΔL

p
.

Experimental data from [4] are superimposed. [(g)–(i)] Asymptotic analysis near the bifurcation point μ� gives access to normal forms
describing the amplitude AðtÞ of the leading order mode. Bifurcation diagrams of the normal forms (black lines) agree quantitatively
with data obtained from the Euler beam equations (green and brown lines) and Cosserat simulations (green and brown square markers),
and experimental data.

(a) (c)

(b)

(d)

(e)

(f)

FIG. 1. (a),(b) Elastic buckled strip with clamped-clamped boundary conditions exhibits two symmetric stable equilibria UA and UB,
and pairs of unstable equilibria of alternating symmetry at increasing energy levels, SA and SB denoting the first unstable pair (SB not
shown). [(c)–(f)] Actuation of buckled strip by (quasistatically) translating its left end by a distance d leads to loss of bistability and a
shape transition that depends on BCs: (c),(e) CH strip exhibits a violent snap through, (d),(f) the transition in the CC strip is smooth.
[(a)–(d)] 3D computer graphics rendering of the Cosserat numerical simulations. (e),(f) Midpoint deflection w=

ffiffiffiffiffiffiffiffiffiffi
LΔL

p
versus

bifurcation parameter d=
ffiffiffiffiffiffiffiffiffiffi
LΔL

p
. In all figures, (green) square markers represent data obtained based on the Cosserat rod theory. Solid

(green) and dashed (brown) lines represent, respectively, stable and unstable branches obtained from the Euler beam model.
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[10] (Supplemental Material [7], Sec. S2). To establish
bifurcation diagrams and carry out asymptotic analysis, we
also analyze the strip’s behavior in the limit of small
deflection wðx; tÞ, with −L=2 < x < L=2, based on the
Euler-Bernoulli Beam theory ([3,4], and Supplemental
Material [7], Sec. S2),

ρbh
∂
2w
∂t2

þ B
∂
4w
∂x4

þ F
∂
2w
∂x2

¼ 0: ð1Þ

The material properties of the strip are denoted by
ρ (density), b (width), h (thickness), and B ¼ Ebh3=12
(bending stiffness, with E the Young’s modulus). The
applied compressive load is denoted by F. In this limit,
the inextensibility condition gives rise to the nonlinear
constraint equation

Z
L=2

−L=2

�
∂w
∂x

�
2

dx ¼ 2ΔL: ð2Þ

The Euler-buckled strip [Figs. 1(a) and 1(b)] admits an
infinite family of static equilibria that come in pairs,
ordered by increasing value of elastic bending energy Eb
(Supplemental Material [7], Sec. S4). We refer to members
of the same pair as twin solutions. The fundamental
buckling mode, i.e., lowest energy level, corresponds to
two stable U-shape equilibria (UA and UB). Higher modes
are unstable and alternate between odd and even harmon-
ics. The first unstable mode gives rise to a twin of S-shape
equilibria labeled SA and SB.
Through systematic numerical experiments, we inves-

tigate how boundary actuation modifies the UA and UB
equilibria. In Fig. 1, we control the transverse distance d at
the clamped end of the CH and CC strip (Supplemental
Material [7], Sec. S5). In Fig. 2, we control the rotation at
one or both ends of the CC strip by specifying the tangent
direction (angle α) at the boundaries (Supplemental
Material [7], Sec. S6). The control parameters are varied
incrementally starting from the twin solutions UA;B,
allowing the elastic strip to reach mechanical equilibrium
at each increment. In Figs. 1(e), 1(f), and 2(d)–2(f), we plot
the strip’s midpoint deflection w, normalized by the length
scale

ffiffiffiffiffiffiffiffiffiffi
LΔL

p
, as a function of the nondimensional control

parameters d=
ffiffiffiffiffiffiffiffiffiffi
LΔL

p
and α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L=ΔL

p
, respectively.

Bistability is lost beyond a certain threshold in all cases,
but the character of this transition depends on boundary
actuation. Asymmetric and symmetric rotations cause snap
through from the inverted (UA) to the natural (UB) shape, as
does transverse shearing of the CH strip. The dynamic
evolution of the strip differs during snapping: the displace-
ment of the midpoint grows quadratically in time in the
asymmetric case, while it grows exponentially in time in
the symmetric case [11]. Antisymmetric rotations and
transverse shearing of the CC strip induce graceful merging
of the equilibrium shapes UA;B. These findings are

consistent with experimental observations [4,8], and agree
quantitatively with [4].
To understand the mechanisms leading to the similarities

and differences in these shape transitions, we solved
Eqs. (1)–(2) to arrive at analytic expressions for the infinite
set of twin equilibria for each type of boundary actuation,
and we assessed their linear stability subject to small
perturbations (Supplemental Material [7], Sec. S2–S5).
This analysis matches quantitatively the numerical solu-
tions in Figs. 1(e), 1(f), and 2(d)–2(f) for small ΔL, and
shows that, depending on the type of boundary actuation,
the stable equilibriumUA that is energetically unfavored by
the boundary actuation must collide with one or both
unstable SA;B equilibria at the shape transition.
Importantly, the similarity of the bifurcation diagrams

in Figs. 1 and 2 is not a coincidence. We proved, by
introducing a frame of reference attached to the line
connecting the strip’s end points, that transverse shearing
of the strip is equivalent to rotation of its boundaries
(Supplemental Material [7], Sec. S8). Hereafter, we use the
strip actuated by rotating its endpoints, with μ ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L=ΔL

p
as the bifurcation parameter, when discussing geometric
symmetries and the role they play in selecting the type of
bifurcation underlying a shape transition.
So which symmetries matter? Three symmetries are

important and best introduced in the context of the
Euler-buckled strip at μ ¼ 0: top-bottom reflection
(w → −w), left-right reflection (x → −x), and π rotation
(w → −w and x → −x). Equations (1)–(2) are invariant
under all three transformations (Supplemental Material [7],
Sec. S3). Because the state of the system is infinite
dimensional, we calculate the bending energy Eb ¼
ðEI=2Þ R L=2

−L=2ð∂2w=∂x2Þ2dx at UA;B and SA;B and depict
the energy landscape semischematically on a reduced 2D
space consisting of the deflection w evaluated at the strip’s
mid and quarter length [Fig. 3(a); Supplemental Material
[7], Sec. S10]. In Fig. 3(b), we unfold the energy landscape
along the closed black curve connecting the U and S
shapes. This representation highlights two important prop-
erties at μ ¼ 0: the minimum energy barrier—difference in
Eb between SA;B and UA;B—that the strip needs to over-
come in order to undergo a shape transition fromUA to UB,
and the geometric symmetries that mapUA to UB and SA to
SB, and vice versa. Specifically, the left-right symmetry
maps each U solution to itself and the top-bottom and
π-rotation symmetries map aU solution to its twin, whereas
the π-rotation symmetry maps each S solution to itself and
the top-bottom and left-right symmetries map an S solution
to its twin. Hereafter, we refer to the π rotation that maps
the U-twin shapes to one another as the U-twin symmetry
and the left-right reflection that maps the S-twin shapes
to one another as the S-twin symmetry. The type of
shape transition the system undergoes for μ ≠ 0 is directly
related to which twin symmetry gets broken by boundary
actuation.
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Asymmetric boundary actuation breaks both U- and
S-twin symmetries. It requires UA to bend more than UB
and SA to bend more than SB, thus increasing the bending
energy of UA and SA and decreasing that of UB and SB
[Fig. 3(c)]. This causes UA and SB to monotonically
approach each other until they merge and suddenly vanish.
The system must jump to UB. Symmetric actuation breaks
theU-twin symmetry but conserves the S-twin symmetry. It
requires UA to bend more than UB but it equally affects SA
and SB. Thus, SA and SB remain energetically equivalent
while the energetic state of UA increases and approaches
that of SA and SB until they all merge in a single unstable
equilibrium [Fig. 3(d)], leaving the system no option but to
jump toUB. Antisymmetric actuation conserves theU-twin
symmetry but not the S-twin symmetry: UA and UB remain
energetically equivalent while SA bends more than SB; UA
andUB monotonically approach SB until they all gracefully
merge in a single stable equilibrium [Fig. 3(e)].
This intuitive understanding of geometric symmetries is

substantiated by extending the asymptotic analysis of [4] to
derive normal forms near the shape transition at μ�. We set
μ ¼ μ� þ Δμ with Δμ ≪ 1, and introduce the dimension-
less variables X¼x=L,W¼w=

ffiffiffiffiffiffiffiffiffiffi
LΔL

p
,W�

eq¼w�
eq=

ffiffiffiffiffiffiffiffiffiffi
LΔL

p
,

T ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=ρbhL4

p
and Λ2 ¼ FL2=B. To analyze the dy-

namic of the strip near the bifurcation, we define a slow
timescale τ ¼ ΔμaT, and expand the dynamic state of the
strip in powers of Δμ [4,11],

WðX; τÞ ¼ W�
eqðXÞ þ ΔμbW0ðX; τÞ þ h:o:t;

ΛðτÞ ¼ Λ�
eq þ ΔμcΛ0ðτÞ þ h:o:t: ð3Þ

Here, the values of a, b, and c depend on the intrinsic
properties of the system. In [11], we present a systematic

approach to calculate them. We find that, for the asym-
metric BCs, a ¼ 1=4, b ¼ c ¼ 1=2 as postulated in [4],
whereas for the symmetric and antisymmetric BCs,
a ¼ b ¼ 1=2, and c ¼ 1. We substitute a, b, and c into
(3) and write ΔμbW0 ¼ AðTÞΦ0ðXÞ, where Φ0ðXÞ is the
shape of the leading order mode and AðTÞ its unscaled
amplitude. We arrive at a reduced form for each boundary
actuation (see Ref. [11]). For the asymmetric BCs, the
normal form obtained in [4] is representative of a saddle
node bifurcation

d2A
dT2

¼ a1;asymΔμþ a2;asymA2; ð4Þ

where a1;asym and a2;asym are positive constants (explicit
expressions in [4,11]). For the symmetric and antisymmetric
BCs, we obtain a normal form representative of a pitchfork
bifurcation (explicit expressions of b1;ð·Þ and b2;ð·Þ in [11]),

d2A
dT2

¼ b1;ð·ÞΔμAþ b2;ð·ÞA3: ð5Þ

For the symmetric case, the coefficients b1;sym and b2;sym are
positive, and the cubic term is destabilizing (subcritical
pitchfork), whereas for the antisymmetric case, the coef-
ficients b1;anti and b2;anti are negative and the cubic term is
stabilizing (supercritical pitchfork).
Bifurcation analysis of (4) and (5) recapitulates the

results in Fig. 3. For Δμ < 0, (4) admits a stable equilib-
rium (representing UA) and an unstable equilibrium
(representing SB) that collide and annihilate at Δμ ¼ 0
[Fig. 2(g)]. AsUA vanishes, the strip is forced to snap toUB
(not represented in the reduced form). For Δμ < 0, (5)
admits three equilibria. In the symmetric case, these

(a) (c) (d) (e)

(b)

FIG. 3. (a) Energy landscape at μ ¼ 0: two potential wells at the two stable equilibria UA;B separated by lowest energy barriers at the
first pair of unstable equilibria SA;B. The two paths connecting UA to UB via either SA or SB constitutes the energetically cheapest routes
to pass from UA toUB. (b) 1D periodic representation of energy landscape. [(c)–(e)] Rotating one or both of the boundaries reshapes the
energy landscape: breaking both U- and S-twin symmetries leads to a saddle-node bifurcation; breaking either U- or S-twin symmetry
leads to a pitchfork bifurcation.
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equilibria represent UA, SA, and SB, that merge at
Δμ ¼ 0 [Fig. 2(h)]. UA becomes unstable and the strip
is forced to snap to UB. In the antisymmetric case, the three
equilibria representUA,UB, and SB. They merge atΔμ ¼ 0
[Fig. 2(i)]. The simultaneous shape change from UA and
UB to SB is graceful.
To quantitatively compare this asymptotic analysis to the

data in Figs. 2(d) and 2(e), we calculated the amplitude A
directly from data (Supplemental Material [7], Sec. S9) and
plotted the results in Figs. 2(g)–2(i) as a function of the
distance from the bifurcation Δμ, measured from the res-
pective μ� value. We observe good agreement (near μ�)
with the bifurcation diagrams of the normal forms (black
lines). Notably, the reduced forms capture correctly, not
only the static shape bifurcations, but also the dynamics of
snapping near these bifurcations [4,11].
The normal forms in (4) and (5) provide the backbone for

plotting schematically the energy landscapes in Figs. 3(d)–
3(f), which exhibit all the features of the rigorous bifurca-
tion analysis (Supplemental Material [7], Sec. S10).
Importantly, the well-known symmetry breaking mecha-
nism that turns a pitchfork into a saddle node bifurcation [9]
(Supplemental Material [7], Sec. S1), appears here, in an
infinite dimensional system, governing elastic transitions.
This intuitive yet universal understanding of elastic insta-
bilities based on symmetries of the Euler-buckled strip
provides powerful tools for diagnostics and design. It helps
explain the force hysteresis observed in [8] (Supplemental
Material [7], Sec. S7). It can also help design program-
mable metamaterials with tunable bistability and rapid
(algebraic or exponential) actuation capabilities. For a
buckled elastic strip, clamped at both ends and driven
via antisymmetric rotations, to undergo a nonlinear snap

through, we must break the U-twin symmetry. This can be
achieved by using a strip with geometric or material
heterogeneity, such as a geometrically tapered strip instead
of a homogeneous strip (Fig. 4, Supplemental Material [7],
Sec. S11). Future work will consider extensions of this
analysis to elastic shells and origami-based structures [24].
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