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Many biological and engineered systems, from the Venus flytrap to mechanical metamaterials, exploit elastic
instabilities and snap-through transitions to achieve a targeted function. Elastic strips, that buckle into one of two stable
equilibrium states and snap from one state to the other as that state becomes unstable or suddenly disappears, have
emerged as canonical systems for analyzing shape transitions. Here, we review recent advances that explain how
geometric symmetries and symmetry-breaking mechanisms govern shape transitions in boundary-actuated elastic strips
and provide universal rules for predicting or designing such transitions. We highlight the opportunities that this
geometric understanding offers to emerging research areas, such as multi-functional metamaterials, morphological
computing, and mechanical intelligence.

1. Introduction

An elastic strip of length L, whose ends are first brought
together by a distance �L to cause the strip to buckle into
one of two stable shapes, provides an intuitive system to
demonstrate shape transitions. The buckled strip is bistable,
with two stable equilibrium states that, energetically, occupy
two equally-deep potential wells (Fig. 1). Snap through
occurs when the strip is in one equilibrium state that becomes
unstable or suddenly disappears as a control parameter is
varied. This snap through is accompanied by a rapid release
of stored elastic energy and is used as a motif for energy
transfer in many biological and engineered systems;
examples range from the familiar Venus flytrap1) and hopper
popper toys2) to jumping robots3) and unconventional
mechanical metamaterials.4–6)

In the carnivorous Venus flytrap example, mechanosensing
and snap-through instabilities are combined in a remarkable
way to produce biological function, namely, prey capture.
Mechanosensitive hairs lining the inner surface of the flytrap
leaf deflect and generate electrical signals (action potential
spikes) when a landed prey touches them. To avoid false or
not fully landed prey, the flytrap requires two consecutive
action potentials within 30 s to initiate a stereotypical
response to close its lobes: two consecutive signals trigger
a hydraulically driven lobe deformation, which onsets a fast
trap closure in about 100ms. This fast closure— the fastest
motion in the plant kingdom— results from a snap-through
buckling instability.1)

Snap-through transitions have been instrumental in the
design of metamaterials made of multistable building blocks.
Transitions at the individual block level allow for the
emergence of impressive properties at the material level,
such as non-reciprocal propagation of elastic waves,6) or
non-linear and programmable stress-strain responses.4) The
metamaterial properties can be finely controlled by tuning
the energy landscape of the constitutive blocks.6) It is thus
important to understand the mechanisms leading to shape
transitions in an elastic strip, both as an elementary actuator
in robotic systems3) and multi-functional metamaterials4–6)

and as a canonical example of bifurcation theory in infinite-
dimensional continua.7,8)

Here, we present a focused review of snap-through
transitions in buckled elastic strips actuated at their
boundaries based on the results in Refs. 9–12. The broader

dynamics of elastic filaments and strips has been and
continues to be extensively treated in the literature— see,
e.g., Refs. 7, 8, 13, and 14 and references therein— and is
beyond the scope of the present review.

The Euler-buckled strip admits, in addition to the two
fundamental stable U-shape equilibria, denoted UA and UB in
Fig. 1, an infinite family of unstable equilibria that come in
pairs, ordered by increasing value of elastic bending energy.
We refer to members of the same pair, including the
fundamental U-shaped pair, as twin solutions. The first
unstable solution consists of a pair of S-shape equilibria
labeled SA and SB. In Fig. 1, we unfold the energy landscape
and represent it schematically in a one-dimensional form.
This reduced representation highlights the minimum energy
barrier— energetic difference in Eb between SA,B and
UA,B — that the strip needs to overcome in order to undergo
a shape transition from UA to UB.

A buckled strip can be forced to snap from one equilibrium
state to another by applying a transverse force Fext at the
midpoint of the buckled strip.2) This method for controlling
the snap-through instability is commonly employed in micro-
electromechanical switches,15) insect-inspired jumping ro-
bots,3) and mechanical metamaterials.6)

Snap-through can also be triggered by boundary actuation,
which is the main focus of this review. For example, snap-
through was demonstrated in a clamped-hinged strip with
the hinged end free to rotate in place and the clamped end
sheared by a distance d in the direction transverse to the
buckled strip10) (Fig. 2). Similar boundary actuation with
both ends clamped led to graceful merging of the two
equilibrium states.10) Yet, in a previous study, when both
ends of a clamped–clamped strip were rotated symmetri-
cally, the strip snapped from one equilibrium to another9)

(Fig. 3). Snap-through was also observed when only one end
was rotated. That is, both symmetric and asymmetric
boundary rotations led to snap-through transitions, but the
character of the snapping differed depending on the
boundary conditions. Specifically, in the case of symmetric
boundary rotations, the early snap-through dynamics is
linear, and the typical distance between the strip’s actual
configuration and its initial configuration grows exponen-
tially in time, thus the term exponential snap-through; in the
asymmetric case, the strip moves away from its initial
configuration in an algebraic manner, thus called algebraic
snap-through.
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A deeper understanding of the mechanisms that dictate the
type of shape transition, algebraic or exponential snap-though
or graceful merging of equilibria, remained lacking until
recently.11,12) In Refs. 11 and 12, we extended the mathe-
matical analysis of Ref. 9 to reveal the mechanisms
governing shape transitions in boundary-actuated elastic
strips, and we showed that the two systems in Refs. 9 and
10 are equivalent. Importantly, to predict the type of
bifurcation and establish design rules for creating a desired
shape transition, we showed that these transitions are

governed by geometric symmetries. Here, we review and
summarize these findings.

2. Shape Transitions in Boundary-Actuated Buckled
Elastic Strips

In this section, we review recent experimental and
mathematical studies of shape transitions in elastic strips.
This review focuses on the violent and gentle shape
transitions reported in Refs. 9–12.

Fig. 2. (Color online) Equilibrium configurations of the Euler-buckled strip under transverse shearing of the boundaries. Starting from the equilibrium
shapes UA,B of the Euler-buckled, these equilibria morph into different shapes as as a misalignment d is introduced between the two boundaries. (A)–(C)
Evolution of the UA configuration for different d values for the clamped–clamped, hinged–hinged, and clamped-hinged boundary conditions. (D)–(F)
Evolution of the non-dimensional transverse force applied on the left clamped boundary of the strip under translational actuation in terms of the non-
dimensional bifurcation parameter � ¼ d=

ffiffiffiffiffiffiffiffiffiffi
L�L

p
. The force is obtained analytically from the Euler beam model (full line) and numerically from the discrete

Cosserat equations (symbols). (G)–(I) Evolution of the non-dimensional midpoint deflection of the strip as a function of the non-dimensional misalignment
parameter �d. The green symbols represent data from numerical Cosserat simulations and the lines data from the Euler beam analysis (full lines for stable
equilibrium and dashed lines for unstable ones).

Fig. 1. (Color online) Buckled elastic beam (A) 3D rendering of buckled elastic beams obtained through numerical simulations based on the 3D Cosserat
equations with L=�L ¼ 20. (B) Plot of the two stable equilibria UA and UB and two unstable equilibria of lowest bending energy SA and SB obtained from the
analysis of the stationary quasi-linear beam model with L=�L ¼ 20. (C) Schematic of the simplified energy landscape of the Euler buckled beam. The energy
landscape is represented here on a one-dimensional periodic space, depicting two potential wells at the two stable equilibria UA,B separated by lowest energy
barriers at the first pair of unstable equilibria SA,B. The beam can pass from UA to UB (or vice versa) by passing through either SA or SB.
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2.1 Transverse boundary actuation
Sano and Wada10) considered a clamped-hinged buckled

strip that is actuated by applying a misalignment d between
its two ends [Fig. 2(A)]. In their experiment, they observed,
at a threshold value of the control parameter d ¼ d�, a snap-
through transition where the beam suddenly snapped from
UA to UB. They measured the vertical force Fb applied by the
strip on the left clamped boundary. At d ¼ d�, as the beam
suddenly snapped, they observed a sudden drop in force Fb.
Decreasing d after snap-through, they showed a strong
hysteresis in the measured force depending on the config-
uration UA or UB of the strip. These observations were
corroborated by theoretical and numerical analysis that
showed that the system suddenly passes from a bistable
to monostable configuration at d ¼ d�. Importantly, they
showed that the force hysteresis obtained in the clamped-
hinged strip did not occur in clamped–clamped and hinged–
hinged strips. The authors attributed this hysteresis to be a
consequence of the asymmetry between the two boundary
conditions.

In Refs. 11 and 12, we investigated the bifurcation
behavior of the three systems introduced in Ref. 10 numeri-
cally, by leveraging the three-dimensional (3D) Cosserat
theory, and its discrete counterpart, the discrete elastic rod
[see (Ref. 11, Supplemental document)]. To establish
bifurcation diagrams and carry out asymptotic analysis, we
also analyzed the strip’s behavior in the limit of small
deflection wðx; tÞ, with �L=2 < x < L=2, based on the Euler-
Bernoulli Beam theory [see (Ref. 11, Supplemental docu-
ment)],

�bh
@2w

@t2
þ B

@4w

@x4
þ F

@2w

@x2
¼ 0: ð1Þ

The material properties of the strip are denoted by ρ
(density), b (width), h (thickness), and B ¼ Ebh3=12
(bending stiffness, with E the Young’s modulus). The
applied compressive load is denoted by F. In this limit, the
inextensibility condition gives rise to the nonlinear constraint
equation

Z L=2

�L=2

@w

@x

� �2

dx ¼ 2�L: ð2Þ

Upon introducing the non-dimensional quantities,9)

W ¼ wffiffiffiffiffiffiffiffiffiffi
L�L

p ; X ¼ x

L
; T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B

�bhL4

s
t; �2 ¼ FL2

B
; ð3Þ

we represented the configuration of the beam by the non
dimensional transverse deflection of the beam WðX; TÞ at
non-dimensional abscissa X (�1=2 < X < 1=2) and non-
dimensional time instant T. The non-dimensional longitudi-
nal compression force is �2 ¼ FL2=B.

In Fig. 2, we show results from our numerical and
theoretical analysis of the three systems introduced in
Ref. 10 and analyzed in Ref. 11. Figures 2(A)–2(C) show a
3D rendering of the equilibrium configurations obtained by
numerically solving the non-linear Cosserat equations.

In Figs. 2(D)–2(F), we report the non-dimensional force
Fb calculated at the boundary in our numerical simulations of
the Cosserat rod model (green symbols) along with the force
obtained from our theoretical analysis (4) (solid and dashed
lines). These results corroborate the findings of Sano and
Wada:10) the force Fb shows a strong hysteresis in the case
of clamped-hinged boundary conditions [Fig. 2(D)] that is
not observed in the hinged–hinged and clamped–clamped
boundary conditions [Figs. 2(E) and 2(F)].

To shed light on the force hysteresis in the clamped-hinged
case in Fig. 2(D), it is instructive to reproduce the explicit
expressions for Fb that we derived based on the quasi-linear
Euler beam model,

clamped-hinged: Fb ¼ dffiffiffiffiffiffiffiffiffiffi
L�L

p �3 cos�

� cos� � sin�
;

hingedhinged and clampedclamped: Fb ¼ dffiffiffiffiffiffiffiffiffiffi
L�L

p �2:

ð4Þ

In all cases, the expression for Fb is the same for both
equilibria UA and UB. However, in the clamped-hinged case,
the value of Λ, which depends on the shape of the strip,
differs between these equilibria, because, as soon as d ≠ 0, UA

Fig. 3. (Color online) Equilibrium configurations of the Euler-buckled strip under rotational actuation. One or both ends of the clamped–clamped strip are
(quasi-statically) rotated by an angle α, leading to loss of bistability as α increases. (A) Asymmetric actuation (one end is rotated) and (B) symmetric actuation
(both ends are rotated by the same amount in opposite direction) lead to violent snap-through. (C) Antisymmetric actuation (both ends are rotated by the same
amount in the same direction) leads to a smooth transition. Midpoint deflection of the strip as a function of the bifurcation parameter � ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
L=�L

p
. Green

squares represent data obtained from numerical simulations based on the Cosserat rod theory. Solid and dashed lines represent, respectively, stable and unstable
branches obtained from the static analysis of the Euler beam model. Colored markers represent experimental data from Ref. 9.
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and UB are no longer energetically equivalent. In contrast, in
the clamped–clamped and hinged–hinged configurations, the
two equilibria are energetically identical. These observations
can be verified analytically, using the explicit form of the
equilibria (Ref. 11, Supplemental document), or geometri-
cally, by viewing the two configurations UA,B in an
orthonormal frame of reference, with one axis connecting
the two end points of the strip. Geometric symmetry in the
clamped–clamped and hinged–hinged cases is evident in such
reference frame, but is broken in the clamped-hinged case.
These geometric symmetries between UA and UB solutions
play an important role, not only in the force hysterisis, but also
in the bifurcations that the system undergoes; symmetry
breaking is discussed at length in Sect. 4.

In Figs. 2(G)–2(I), we show the evolution of the non-
dimensional midpoint deflection w0=

ffiffiffiffiffiffiffiffiffiffi
L�L

p
of the equilibria

obtained from our numerical simulations and from our
analytical calculations in term of the non-dimensional control
parameter d=

ffiffiffiffiffiffiffiffiffiffi
L�L

p
. Stable equilibria are shown as full lines

while unstable ones are plotted as dashed lines. These results
show that the violent transition observed at d ¼ d� in the case
of clamped-hinged boundaries results from one stable and
one unstable equilibria that merge and suddenly disappear.
This is the hallmark of a saddle-node bifurcation.

In the clamped–clamped and hinged–hinged cases, a
transition from bistable to monostable is observed at a
threshold value of the control parameter, but these transitions
are characterized by a smooth merging between two stable
and one unstable equilibrium branches. This is the hallmark
of a supercritical pitchfork bifurcation.

2.2 Rotational boundary actuation
Gomez et al.9) considered a clamped–clamped buckled

strip that is actuated by rotating one or both of its boundaries
by an angle α (Fig. 3). In their experiment, the strip was
initially in one, say UA, of the two buckled stable states with
angle � ¼ 0 at both boundaries. The angle imposed at the
left boundary was then quasi-statically increased by small
increments while the other end of the beam remained fixed
[Fig. 3(A)]. As the angle α reached a threshold value ��, the
authors observed a violent snap-through transition where the
strip suddenly jumped to UB.

In Fig. 3, we show results from our numerical and
theoretical analysis of the two systems introduced in Ref. 9
with asymmetric and symmetric boundary actuation and a
third system of antisymmetric actuation.11,12)

Figure 3(B) shows the evolution of the non-dimensional
midpoint deflectionw0=

ffiffiffiffiffiffiffiffiffiffi
L�L

p
in term of the non-dimensional

angle � ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
L=�L

p
imposed at the left boundary. Colored

markers show the experimental data obtained in Ref. 9, green
markers show data obtained from Cosserat simulations and
lines show theoretical results obtained from the analysis of the
static quasi-linear beam model.11,12) Experimental and numer-
ical data show the same behavior: the strip jumps from UA to
UB at � ¼ ��. Theoretical analysis shows that this snap-
through transition occurs at a bifurcation where a stable branch
(UA) and an unstable one (SB) merge and disappear.

Besides the asymmetric actuation analyzed in Ref. 9, we
considered the case where both boundaries are rotated
symmetrically [Fig. 3(B)] and antisymmetrically [Fig. 3(C)].
Numerical Cosserat simulations show that symmetric and

antisymmetric actuations lead to a transition from a bistable
to a monostable state at a bifurcation point � ¼ ��. In the
symmetric case, for � > ��, the beam snaps from UA to UB

and the early dynamic is exponential.9,12) Static and stability
analysis of the quasi-linear beam model shows that snap-
through occurs at a bifurcation where two unstable branches
SA and SB merge with a stable branch UA that becomes
unstable [inset Fig. 3(B)].9,11) This indicates a subcritical
pitchfork bifurcation.

In the antisymmetric case, there is no snap-through, the
two stable equilibrium branches UA and UB merge smoothly
onto an unstable branch SB at � ¼ ��. The latter becomes the
only stable equilibrium for larger values of μ. These diagrams
point to a supercritical pitchfork bifurcation.

The bifurcation diagram in Fig. 3(A) resembles the one in
Fig. 2(G) for the clamped-hinged system under translational
shearing of the strip’s boundaries. Similarly, the bifurcation
diagram in Fig. 3(C) resembles the bifurcation diagram in
Fig. 2(I). This resemblance is not a coincidence. The two
systems can be mapped to one-another by a clever choice
of frame of reference [Fig. 4 and (Ref. 11, Supplemental
document)]. That is, the distinct set-ups introduced in
Refs. 10 and 9 are analogous.

3. Normal Forms Near Shape Transitions

In Refs. 11 and 12, we analyzed the solution branches that
split off at the bifurcation point and the behavior of these
solutions in the neighborhood of the bifurcation by deriving
equations of the temporal evolution of the amplitudes of
critical normal modes. By definition, the critical normal
modes have eigenfrequencies that vanish at the bifurcation
and are characterized by mildly unstable or slightly damped
behavior near the bifurcation. All other modes are strongly
damped and thus play a marginal role in the dynamics near
the bifurcation. Normal forms are dynamic equations that
describe the time evolution of the amplitude of the critical
modes.9,11,12) Importantly, the type of bifurcation exhibited
by these normal forms provides a precise classification of the
bifurcation underlying elastic shape transitions.

The derivation of the normal forms entails the introduction
of a parameter �� ¼ � � �� that characterizes the distance to
the bifurcation point in parameter space, and carrying out an
asymptotic analysis in the limit �� � 1. The details of this
analysis are beyond the scope of the present review and can
be found in (Refs. 9 and 11, Supplemental documents) and in
Ref. 12. Here, we present a summary of the main findings.

Specifically, we review the normal modes for the three
types of rotational boundary actuation. We let AðTÞ�ðXÞ
denote the leading order term in the asymptotic expansion
of WðX; TÞ �W�

eqðXÞ, where W�
eqðXÞ is the shape of the beam

at the bifurcation. The leading order term has the following
interpretation. Near the transition (�� > 0), the strip moves
away from its equilibrium configuration at the bifurcation
following the mode �ðXÞ whose amplitude AðTÞ grows
according to a dynamical equation obtained by carrying out
the detailed asymptotic analysis.

For the asymmetric rotation, the amplitude equation was
first derived in Ref. 9 and takes the form

d2A

dT2
¼ a1,asym�� þ a2,asymA

2; ð5Þ
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where a1,asym and a2,asym are positive constants (explicit
expressions in Ref. 9). The ODE (5) describes all the
dynamic characteristics of the strip near the bifurcation point
(Refs. 9 and 12). It has the normal form of a saddle-node
bifurcation.16) There is no linear term in (5) and thus no
exponential growth. At early time, at small A, the snap-
through dynamics is driven by the constant term and the
dynamics is ballistic.

In Refs. 11 and 12, we extended the asymptotic analysis
introduced in Ref. 9 to the cases of symmetric and
antisymmetric actuation [Figs. 3(B) and 3(C)]. The reduced
form that governs the evolution of the amplitude AðTÞ of the
leading order mode in the vicinity of the bifurcation point
takes the form:

d2A

dT2
¼ b1;ð�Þ��A þ b2;ð�ÞA3: ð6Þ

In the symmetric case, b1,sym and b2,sym are positive constants
(full expression in Ref. 12) and (6) corresponds to the normal
form of a subcritical pitchfork bifurcation. For �� > 0, (6)
admits only one unstable equilibrium (corresponding to UA

here12)) and the beam snaps to the distant equilibrium UB [not
captured by the reduced form (6)]. The dynamics of this
snap-through follows (6): at early time, the first term in (6)
dominates and the dynamics is linear, as predicted in Ref. 9
and proven in Ref. 12; at later times, the destabilizing cubic
term comes into play and A blows up to infinity. In reality,
higher order non-linear terms come into play and saturate A
when the beam reaches the new equilibrium UB. This snap
through differs from the snap-through dynamics observed in
the asymmetric case [Fig. 3(A)] in that the strip initially goes
away from its configuration at the bifurcation in an
exponential manner, as opposed to the algebraic growth
observed in the saddle-node bifurcation.9,12)

In the antisymmetric case, b1,antisym and b2,antisym are both
negative constants (full expression in Ref. 12) and (6)
corresponds to a supercritical pitchfork bifurcation. For
�� < 0, there are two stable equilibria (UA and UB) and one
unstable one (SB). At �� ¼ 0, the two stable branches
collapse onto the unstable one which becomes stable for
�� > 0. This explains that in Fig. 3(C), the transition from
UA and UB to SB is smooth.

4. Symmetries and Symmetry-Breaking Mechanisms

These studies show that the behavior of an elastic structure
near a shape transition is tightly related to the type of
bifurcation the system undergoes at the transition.9,11,12) If
one knows the type of bifurcation a system is likely to
undergo, one can predict the functional form of the reduced
equations and therefore predict the dynamic characteristics of
elastic structure near these bifurcations.9,12) In the following,
we review the geometric mechanisms that select these
different bifurcation types.11)

Pitchfork bifurcations are known to arise in systems that
possess binary symmetries. This is reflected by the invariance
of (6) under a transformation A ! �A (left-right symmetry).
It is well known in bifurcation theory, that when an
asymmetry is introduced in (6), the bifurcation takes the form
of a saddle-node; see, e.g., Ref. 16. In Ref. 11, we showed
that a similar symmetry breaking mechanism is responsible
for the selection of the type of elastic shape transition.

For example the clamped–clamped and hinged–hinged
beams exhibit smooth shape transition under transverse
actuation [Figs. 2(H) and 2(I)] similar to that observed in the
antisymmetric rotational actuation. Breaking the symmetry
between the two boundaries using a clamped-hinged beam
leads to snap-through [Fig. 2(G)] that resemble the saddle-
node bifurcation obtained for the asymmetric rotational
actuation. In the same way, symmetric and antisymmetric
rotational actuation leads to pitchfork bifurcations while
breaking all sort of symmetries between the two boundaries
with asymmetric actuation yields a saddle-node.

But if symmetry is responsible for the selection of these
bifurcations, which symmetry matters in these Euler buckled
beam? How are the three types of elastic shape transitions
reviewed in Fig. 3 selected through breaking of these
symmetries?

To answer these questions, we start by reviewing the
important geometric symmetries in the initial buckled beam
configuration (� ¼ 0, d ¼ 0). As pictured in Fig. 5, there are
four important equilibrium shapes involved in the shape
transitions analyzed in this review: the two stable U-shape
equilibria that correspond to the two potential wells and the
two unstable S-shape equilibria that correspond to the two

Fig. 4. (Color online) Change of frame of reference. The system with transverse boundary shearing in Fig. 2, when observed in a frame attached to the line
that connects the two ends of the strip, becomes analogous to the system with rotational actuation depicted in Fig. 3. (A) 3D rendering of the two equilibria UA

and UB from Fig. 2. (B) Corresponding analytical equilibria depicted in inertial frame ðex; ey; ezÞ. (C) Same equilibria depicted in the ðbx;by;bzÞ Lagrangian
frame where bx is defined along the line that connects the two ends of the trip. (D) Bifurcation diagram obtained analytically for the transverse shearing case.
(E) Comparison of the bifurcation diagram obtained for the transverse shearing case (green lines) and expressed in the Lagrangian frame ðbx;by;bzÞ with the
bifurcation diagram obtained for the case of antisymmetric rotational actuation (black lines). The two bifurcation diagrams align indicating that transverse
shearing of the clamped–clamped beam in Fig. 2(C) is equivalent to the antisymmetric rotational actuation in Fig. 3(C). Similar argument can be made to show
equivalence between the transverse shearing of the clamped-hinged beam in Fig. 2(A) with the asymmetric rotational actuation in Fig. 3(A).
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lowest energy barriers [Fig. 1(B)]. Applying a transformation
w ! �w (top-bottom symmetry) to any of these shapes
yields its twin configuration: it maps UB to UA and SB to SA,
and vice-versa (Fig. 5). This symmetry is trivial because it is
always broken under additional transverse shearing or
rotational boundary actuation.

In addition to the trivial top-bottom symmetry, each of the
U-shape and the S-shape equilibria admits a twin-symmetry
which, when applied to that shape, yields its twin solution
(Fig. 5). For the U-shape, the transformation w ! �w
x ! �x maps UB to UA and vice-versa. We call this π-
rotational symmetry the U-twin symmetry. For the S-shape,
the transformation x ! �x maps SB to SA and vice-versa.
This left-right symmetry is called the S twin symmetry. These
two twin symmetries govern the type of shape transition.

When the boundaries of the elastic beam are rotated
[Figs. 1(A)–1(C)], the stable shapes UA or UB get deformed
and the associated energy landscape shown in Fig. 1(B) is
reshaped until one of the two potential wells (UA or UB)
disappears. At this point, a shape transition is observed. The

nature of this transition depends on whether the U twin
symmetry and S twin symmetry are broken or conserved by
the boundary actuation.11) This is best seen by examining
how the energy landscape gets deformed by the three types of
rotational actuation (Fig. 6).

Both U- and S-twin symmetries get broken under
asymmetric boundary actuation. Indeed, as shown in Fig. 6,
asymmetric rotation at one end requires UA to bend more
than UB and SA to bend more than SB, thus increasing the
bending energy of UA and SA and decreasing that of UB and
SB. This causes UA and SB to monotonically approach each
other until they merge and suddenly vanish in a saddle node
bifurcation. As UA disappears, the system must jump to UB in
a snap-through transition.

The U-twin symmetry gets broken under symmetric
actuation of both ends, but not the S-twin symmetry. The
symmetric rotation of both ends requires UA to bend more
than UB but it equally affects SA and SB. Thus, SA and SB
remain energetically equivalent while the energy level of UA

increases and approaches that of SA and SB. Eventually, all

U-twin symmetry

S-twin symmetry

Fig. 5. (Color online) Euler buckling symmetries. Transformations that map a buckled configuration to its twin. We call the π-rotational symmetry that maps
the U-shapes to one another the U-twin symmetry and the left-right symmetry that maps the S-shapes to one another the S-twin symmetry.

A B C

collide and vanish collide and become unstable merge gracefully

Fig. 6. (Color online) Potential energy landscape is intimately related to broken geometric symmetries that dictate the elastic shape transition. Energy
landscape at � ¼ 0 (top row, black lines) is characterized by two equally-deep potential wells at the two stable equilibria UA,B separated by lowest energy
barriers at the first pair of unstable equilibria SA,B. Rotating one or both of the boundaries reshapes the energy landscape: (A) breaking both U- and S-twin
symmetries leads to a saddle-node bifurcation; (B, C) breaking either U- or S-twin symmetry leads to a pitchfork bifurcation. (B) In the symmetric case, the
broken U-twin symmetry gives rise to a subcritical pitchfork bifurcation, where one of the stable equilibria, here UA becomes unstable; the system must jump to
UB in a violent manner. Note that WB denotes an unstable equilibrium at the next higher energy level compared to SA,B and its presence affects the dynamics of
the snap-through as detailed in Ref. 12. (C) In the antisymmetric case, the broked S-twin symmetry gives rise to a supercritical pitchfork bifurcation, where
both stable equilibria UA,B merge gracefully with the unstable equilibrium SB, resulting in a single stable equilibrium.
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three equilibria, UA, SA, and SB, all merge, giving rise to
a single unstable equilibrium in a subcritical pitchfork
bifurcation. As UA becomes unstable, the system no option
but to jump to UB.

The S-twin symmetry gets broken under antisymmetric
actuation, but not the U-twin symmetry. Here, UA and UB

remain energetically equivalent while SA bends more than
SB. For this antisymmetric actuation at the two ends, UA

and UB monotonically approach SB until they all gracefully
merge in a single stable equilibrium in a supercritical
pitchfork bifurcation. No snapping occurs.

This intuitive understanding of geometric symmetries and
the role of symmetry-breaking is substantiated by the
rigorous asymptotic analysis in Refs. 9, 11, and 12 and the
resulting normal forms summarized in (5) and (6) near the
shape transition.

5. Discussion

We presented a focused review of snap-through transitions
in buckled elastic strips, with an emphasis on the role of
symmetry and symmetry-breaking mechanisms in shaping
these elastic transitions.

Symmetry is one of the most fundamental concepts in
physics. It fashions the energy landscape and governs the
equilibrium configurations the system can adopt. Broken
symmetries are often invoked to explain transitions in
physical systems, but bifurcation theory is typically ex-
plained using simple one-dimensional examples.16) Extend-
ing this understanding to infinite-dimensional systems is
challenging. The understanding we developed for elastic
strips in Refs. 11 and 12 and reviewed here could serve as an
educational tool to illustrate the role of symmetry-breaking in
the bifurcation of infinite-dimensional continua. Importantly,
snap-through transitions in boundary-actuated elastic strips
result from one of two symmetry breaking mechanisms: one
that causes a stable equilibrium to collide with an unstable
equilibrium and disappear in a saddle-node bifurcation, and
another that causes a stable equilibrium to become unstable
by merging with two unstable equilibria in a pitchfork
bifurcation. While both mechanisms lead to snap-through
transitions, the dynamics of the transition depends on the type
of bifurcation. Saddle-node bifurcation results in algebraic
growth of the instability while subcritical pitchfork bifurca-
tion results in exponential growth.11,12)

Symmetries and symmetry-breaking help explain the force
hysteresis observed in Ref. 10 and reproduced in our
numerical and analytical models in Fig. 2 and in Ref. 11,
Supplemental document. Also, when combined with the
normal form analysis, symmetries can be exploited to
develop diagnostic tools for predicting the type of shape
transition the system undergoes and to anticipate when the
system is approaching a bifurcation and even to predict the
exact position of the bifurcation point �� when it is not
known a priori.11,12)

Importantly, this intuitive yet universal understanding of
elastic instabilities based on symmetries of the Euler-buckled
strip provides powerful tools for diagnostics and design of
elastic transitions. They can help design programmable meta-
materials with tunable bistability and rapid (algebraic or
exponential) actuation capabilities. For example, for a
buckled elastic strip, clamped at both ends and driven via

antisymmetric rotations, to undergo a non-linear snap-
through, we must break the U-twin symmetry. This can be
achieved by using a strip with geometric or material
heterogeneity, such as a geometrically-tapered strip instead
of a homogeneous strip.11)

These elastic systems open up new avenues for (i)
understanding how biological systems integrate physics with
sensing and control to achieve biological function, and (ii)
developing new engineering solutions for physically intelli-
gent systems, such as new metamaterials composed of
elementary bistable units, that can sense, actuate, and learn.17)
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