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Forcing of a flame by a periodic flow in a Hele-Shaw burner
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The parametric forcing of premixed flames is observed here in the geometry of a
Hele-Shaw burner. Using a vibroacoustic coupling, we are able to study the thresholds
of the parametric flattening (where the flame wrinkles are suppressed) and the parametric
instability (where the flame wrinkles oscillate at twice the acoustic period) and compare
the measured values to a low-frequency theory. It is shown that the dependency of the
parametric threshold with equivalence ratio is lower than predicted, suggesting that the
Markstein lengths are frequency dependent and that the flattening threshold is independent
of the Markstein number and of the nondimensional forcing frequency, in agreement with
the Bychkov limit.
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I. INTRODUCTION

The interaction of a flame with acoustics is a fundamental problem in combustion. It is tradition-
ally studied to understand and prevent the formation of thermoacoustic instabilities. Acoustic waves
are also useful to analyze how flames respond to time-dependent flows. In particular, in combustion
models where the flame is described as a discontinuity of the flow, the local speed of propagation
of the flame front w is related to the speed of the upcoming flow u1 by a kinematic relation of the
form [1–4]

(u1 − w) · n = uL − LI
uL

R
+ LII n · ∇u1 · n, (1)

where n is the normal vector to the flame front (directed towards the burnt gases), uL is the
laminar flame speed, R is the local radius of curvature of the flame front, n · ∇u1 · n is the
normal-normal component of the rate-of-strain tensor, and LI and LII are the Markstein lengths.
These two parameters are key quantities in combustion models. They express the role of transport
phenomena happening in the thickness of the flame and allow them to be taken into account while
still considering the flame as a flow discontinuity. Their expression is traditionally obtained through
asymptotic analysis of the internal structure of the flame under the assumption that the typical spatial
and time scales of the incident flow are large compared to the transit time τL and thickness dL

of the flame, respectively [5–7]. However, when the timescales associated with the flow are no
longer large in comparison to the transit time of the flame, its typical response to curvature and
strain is likely to be modified. This question was first addressed theoretically by Joulin [8] in the
framework of a constant density model. He demonstrated that the flame response to stretch is indeed
frequency dependent by performing an asymptotic analysis of the internal structure of the flame
and considering a curvature and normal-normal component of the rate-of-strain tensor that vary
periodically in time at a frequency ω̃a. More precisely, when ω̃a is increased, LII monotonically
decreases until the flame response to strain completely disappears at high forcing frequency. This is
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due to a memory effect that makes the flame insensitive to hydrodynamic stretch when the latter
occurs on a too small timescale (compared with τL). The flame does not have time to see the
flow variations occurring at timescales that are small compared to the transit time. The diffusive
mechanisms are no longer effective on these short timescales for the same reason. Therefore the
Lewis number component of LI vanishes at high frequency for which all the flames behave as if
Le = 1. These analytical results were qualitatively confirmed later in the more realistic variable
density framework [9].

From a numerical or experimental standpoint, there are only a few studies that have addressed
the frequency dependence of Markstein lengths. Indeed, due to the fact that their value depends
on the position of the adopted surface of reference within the flame, their direct measurement is
made very complicated [10,11]. An alternative is to perform indirect measurement of their value by
analyzing the dynamics of a flame submitted to a periodic flow. As first suggested by Markstein
[12], when advected by a periodic flow the flame front is described by a parametric oscillator
equation. As such, parametric restabilization and parametric resonance can be observed. Searby and
Rochwerger [13] have proposed a refined version of Markstein’s theory that allows the prediction
of the parametric restabilization and parametric resonance thresholds in terms of the amplitude of
the acoustic wave and the wave number of the perturbation. In their study they have compared these
theoretical thresholds to experimental measurements obtained for hydrocarbon flames propagating
downwards in a tube; these flames were forced by an acoustic wave that was generated by a speaker
positioned at the bottom of the tube. Their measurements seem to corroborate Joulin’s theory: at
high frequency, all the flames seem to respond in the same way, independently of their chemical
composition. Similar observations were obtained in [14] with threshold measurements obtained
from direct numerical simulation.

In the present paper, we propose to supplement these previous studies by presenting experimental
measurements of these threshold values on flames propagating in a Hele-Shaw burner. This type of
burner has been extensively exploited in recent studies for its potential applications in microcom-
bustion devices and the easy visualization of flame dynamics that it offers [15–21]. Until recently
it was still not clear if the same parametric behavior could be obtained in such a device due to the
confined geometry associated with this type of burner. The viscous losses at the walls of the burner
were shown to inhibit the occurrence of the standard thermoacoustic instability [19,22]. In a recent
study we demonstrated that parametric restabilization and parametric resonance can be observed in
this kind of apparatus, and we uncovered a new type of coupling between the flame propagation
and the structural modes of the burner [23]. Here we propose to exploit this coupling mechanism
to perform measurements of restabilization and parametric thresholds. For this purpose, one of the
walls of the burner is forced with a shaker in order to excite one of its eigenmodes. As demonstrated
in [23], this in turn produces an oscillating flow in the burner cavity that interacts with the flame
propagation in the same way as in the tube of the Searby and Rochwerger experiment. Our apparatus
is more versatile than that in the Searby and Rochwerger experiment for two reasons: (i) Due to its
particular geometry the dynamics of the flame are quasi-2D and easier to visualize. This allows
us to define precisely the instant when a threshold is crossed. Moreover, it is possible to design
very large Hele-Shaw burners and determine accurately the restabilization threshold (̃k∗

I , ũ∗
I in the

following) corresponding to large wavelengths. This was more difficult with their tube experiments
and so they focused only on the parametric instability threshold (̃k∗

II , ũ∗
II in the following). In this

paper we will see that studying this restabilization threshold provides interesting information on the
flame response. (ii) The eigenmode of the structure can be easily varied by changing the material
or geometrical properties of the walls of the Hele-Shaw burner, which allows us to study the flame
response to a large range of frequency with the same apparatus. The present paper is organized as
follows: In Sec. II we introduce the experimental apparatus and the procedure employed to perform
these measurements. In Sec. III we briefly present the Searby and Rochwerger theory and the main
properties of the parametric oscillator equation describing the flame dynamics. Our experimental
results are then presented and compared to the theory in Sec. IV and we finally discuss these results,
emphasizing particularly the discrepancy between our measurements and the theory.

053201-2



FORCING OF A FLAME BY A PERIODIC FLOW IN A …

(a) (b) (c)

FIG. 1. Experimental apparatus. (a) The flame propagates downwards in a Hele-Shaw burner composed of
two borosilicate glass plates oriented vertically and separated by a 5-mm gap. The burner cavity is closed on the
sides and at the bottom and open at the top. The eigenmodes of one of the plates are forced using a shaker, and
the resulting vibrations are recorded using two accelerometers positioned on the plate (see [23] for details).
(b) The oscillations of the plates generate an oscillating flow in the burner cavity. Here we plot the vertical
component of the flow speed ua (on the horizontal axis) in terms of the vertical position in the Hele-shaw
burner y (on the vertical axis where the zero corresponds to the top end of the burner). Moving downwards in
the burner, we observe a succession of areas with a low amplitude oscillating flow (nodes) and areas with a
large amplitude oscillating flow (antinodes). These nodes and antinodes of the flow speed correspond to nodes
and antinodes of the plate vibrations [23]. (c) When propagating downwards, the flame undergoes a periodic
oscillating flow with different acoustic amplitude depending on the position in the tube, and exhibits parametric
restabilization and/or parametric destabilization.

II. PARAMETRIC FORCING OF A PREMIXED FLAME

The Hele-Shaw burner used in this study is composed of two borosilicate glass plates (Young
modulus E = 69 GPa) separated by a 5-mm gap. The two plates are 1500 mm in height and 500 mm
in width. The burner cavity is closed on the sides and at the bottom and open at the top. The
oscillating flow is generated by enforcing a structural mode of the burner with a shaker attached
to one of the walls [see Fig. 1(a)]. The glass plate of the Hele-Shaw burner can be switched between
h = 5 mm and h = 19 mm thicknesses. This modifies the bending stiffness of the plate and allows
for expansion of the range of frequencies we can study. For each experiment reported hereafter,
the shaker frequency is adjusted to an eigenmode of the plate in order to generate large bending
oscillations (see [23] for details). The deformations of the wall induce volume variation in the
burner cavity. This in turn generates vertical flow oscillations with variable amplitude depending on
the vertical position in the burner. A typical profile of the amplitude of the vertical flow oscillations
ua is presented on Fig. 1(b). The bending mode shape leads to nonhomogeneous amplitude of the
oscillating velocity with a succession of low velocity amplitude regions (nodes) and high velocity
amplitude regions (antinodes). When a flame, ignited at the top of the burner, propagates downwards
through this oscillating flow, its dynamics are strongly influenced. A typical space-time diagram of
the obtained flame is presented in Fig. 1. We notice that the flame is wrinkled when crossing low
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flow velocity regions, but it is flattened when passing through regions where the amplitude of the
oscillating flow is large. This is a typical observation of a parametric flattening of a Darrieus-Landau
(DL) unstable flame. These dynamics are correctly described by the following Searby Rochwerger
theory.

III. SEARBY ROCHWERGER THEORY

A. The equivalent parametric oscillator

This theory, following the pioneering idea of Markstein [12], considers that the coupling with
the flame is essentially controlled by the acceleration. This is contrary to other models where the
coupling is caused by the pressure, and it leads to a pulsating acceleration term added to the gravity
in the equation introduced in [7] [Eq. (37)]. When all the lengths are rescaled by the flame thickness
dL and the time is rescaled by the transit time τL = dL/uL, the following nondimensional oscillator
equation for the vertical coordinate of the front is obtained:

∂2�̂

∂ t̃2
+ 2c

∂�̂

∂ t̃
+ (a + a1 cos(ω̃ãt ))�̂ = 0, (2)

where �̂ is the amplitude of the mode k̃, t̃ is the nondimensional time, and ω̃a is the nondimensional
pulsation of the acoustic oscillation. c, a, and a1 are given by

c = k̃
(1 + k̃(Ma − J )/(1 − γ ))

(2 − γ ) + γ k̃(Ma − J /γ )
, (3)

a =
{

γ

Fr2 k̃ − γ

1 − γ
k̃2

[
1 + 1 − γ

Fr2

(
Ma − J

γ

)]

+ γ

1 − γ
k̃3

(
λ2 + (2 + γ )

Ma

γ
− 2J

γ
+ (2Pr − 1)H

)}/
{(2 − γ ) + γ k̃(Ma − J /γ )}, (4)

a1 = γ k̃ũaω̃a(1 − k̃(Ma − J /γ ))

(2 − γ ) + γ k̃(Ma − J /γ )
, (5)

where γ = (ρu − ρb)/ρu depends on the density in the burned and unburned gases, λ2 is the
nondimensional thermal conductivity evaluated at burnt gases temperature, Ma = LI/dL = LII/dL

is the Markstein number (which is unique in the case of simple chemistry and when the front
position is defined as the position of the reacting sheet, as done in [7]), Fr = uL/

√
gdL is the

Froude number associated with flame propagation, Pr = ν/Dth (with ν the momentum diffusivity
and Dth the thermal diffusivity) is the Prandtl number evaluated at the fresh gases temperature, and
ũa = ua/uL is the reduced acoustic velocity.

The integrals H and J are given by

H =
∫ 1

0
λ2 − λ(θ )dθ, (6)

J = γ

1 − γ

∫ 1

0

λ(θ )

1 + θγ /(1 − γ )
dθ, (7)

where λ(θ ) is the thermal conductivity evaluated at reduced temperature θ normalized by the
thermal conductivity λ1 in fresh gas, and λ2 is the conductivity in burned gas.
Setting

z = 1
2 ω̃ãt, (8)

Y (z) = φ̃ (̃t ) exp(c̃t ), (9)
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ã = 4(a − c2)

ω̃2
a

, (10)

q = −2a1

ω̃2
a

, (11)

Eq. (2) is reduced to the so-called Mathieu equation:

d2Y
dz2

+ (̃a − 2q cos(2z))Y = 0. (12)

Floquet theory predicts solutions in the form

Y (z) = exp(μz)ψ (z) + exp(−μz)ψ (−z), (13)

where ψ is a 2π -periodic function and μ is the Floquet exponent (also called characteristic
exponent). Thanks to (13), the stability condition of Mathieu equation solutions is made explicit: If
Re(μ) > 0, Y (z) grows exponentially with z (unstable), otherwise the solution is stable [Re(μ) �
0]. Typical stability diagrams for Y (z) can be seen in [24], for example.

The stability condition for �̂(t ) is then obtained from (8) and (9). The flame front is stable if
Re(μ) � 2c/ω̃a and unstable if Re(μ) > 2c/ω̃a. As ã and q depend on the wave number of the
perturbation k̃, on the physicochemical parameters of the flame, and on the forcing parameters
(ω̃a, ũa), their physical meaning is difficult to understand. Therefore in the following the stability
diagrams for �̂ will be shown in the (̃k, ũa) plan. Typical diagrams are plotted in Fig. 2 for different
values of ω̃a, Fr, Ma. Here we use the same parameters as those used in [13] Fig. 1, which are
restated here:

Pr = 0.689 γ = 0.822 λ2 = 3.19 H = 0.96 J = 3.33. (14)

Other parameters are given on the plots. To obtain these diagrams, for each set of parameters
(ω̃a, Fr, Ma), the corresponding values for ã, q, and κ = 2c/ω̃a are computed. The Floquet exponent
μ(̃a, q) is then obtained numerically [25] and the stability condition Re(μ(̃a, q)) � κ (̃a, q) is
verified. The process is repeated for each set of parameters (̃k, ũa). With the above parameters,
the obtained diagrams agree well with those obtained in [13]. This validates our method to compute
the characteristic exponents. On diagrams B and C, a third unstable zone, not visible in [13], is
observed (see also [26,27]). It corresponds to the second region of unstable solutions visible on the
typical Mathieu stability diagram (see [24]). This second parametric resonance is never observed (at
the parametric threshold) in our experiments, as the acoustic threshold associated with it is always
higher than that associated with the first resonance.

We now focus on the first two regions. The first one corresponds to the zone where the flame is
Darrieus-Landau unstable. For ũa = 0 (no forcing), this region corresponds to the range of unstable
wave numbers given by the dispersion relation obtained in [7]. As ũa is increased, the range of
unstable wave numbers narrows until this zone completely disappears for ũa = ũ∗

I . At this threshold
intensity there is only one DL unstable wave number k̃∗

I . The second region corresponds to the
first parametric resonance of the oscillator equation associated with the flame dynamics. This zone
appears for a nonzero acoustic intensity ũa = ũ∗

II at a wave number k̃∗
II . As the forcing intensity is

increased, this zone becomes larger, leading to a wider range of unstable wave numbers. As can
be seen in Fig. 2, the thresholds ũ∗

I and ũ∗
II depend on the flame parameters and on the forcing

frequency.
If for a given set of parameters, ũ∗

II > ũ∗
I [for example, in Figs. 2(a) and 2(d)], three different

scenarios may be observed, depending on the forcing intensity ũa: (i) If ũa < ũ∗
I , the flame is

Darrieus-Landau unstable [see Fig. 2(e)]. (ii) If ũ∗
I < ũa < ũ∗

II , the DL instability disappears and
the flame is flattened [see Fig. 2(f)]. We will call this zone the restabilization zone. (iii) Finally,
if ũa > ũ∗

II , a parametric instability is observed and the flame front exhibits a cellular aspect with
structures oscillating at a frequency twice smaller than the forcing frequency [see Fig. 2(g)].
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(a) (b) (e)

(f)

(g)

(h)

(c) (d)

FIG. 2. Stability diagrams for different sets of parameters and their corresponding regimes of propagation.
For a given set of parameters where ũ∗

I < ũ∗
II [see (a) and (d) for example], three different scenarios of

propagation can be observed depending on the acoustic amplitude ũa: (i) if ũa < ũ∗
I , the flame is DL unstable

and exhibits characteristic wrinkling with cusps pointing towards the burnt gases [see (d)]; (ii) if ũ∗
I < ũa < ũ∗

II ,
all the wave numbers are stable and parametric flattening is observed [see(f)]; (iii) if ũa > ũ∗

II , a typical
parametric instability is observed with patterns pulsating at half the forcing frequency ω̃a. On frame (g) the
evolution of a parametrically excited front is represented over one full acoustic period (from top to bottom).
We note that at the end of the period the minima and maxima of the front have exchanged positions. After
another acoustic period, the minima and maxima would get back to their original position. (The period of the
pattern is twice the acoustic period.). On the other hand, if for a given set of parameters ũ∗

II < ũ∗
I , there is no

parametric restabilization zone [see (b) and (c)]. Instead, DL instability and parametric instability may coexist
for a certain range of ũa [see (h), where one can note the DL (large wavelength) and the parametric (small
wavelength) instabilities].

Otherwise, if ũ∗
II < ũ∗

I there is no restabilization zone [see Figs. 2(b) and 2(c)]. The DL instability
and the parametric one may coexist in the case where ũ∗

II < ũa < ũ∗
I [see Fig. 2(h)].

By computing stability diagrams such as the ones presented in Fig. 2, the theoretical thresholds
of the parametric flattening (acoustic velocity ũ∗

I with wave number k̃∗
I ) and parametric instability

(acoustic velocity ũ∗
II with wave number k̃∗

II ) can be obtained for several sets of parameters.

B. Parametric oscillator properties

Here we focus on the dependence of the theoretical threshold values (̃k∗
I , ũ∗

I ) and (̃k∗
II , ũ∗

II ) on
the forcing frequency ω̃a and on the value of the Markstein number. The thresholds are computed
numerically using the same procedure as the one used to obtain the diagram of Fig. 2. The Markstein
number Ma and the reduced forcing frequency ω̃a are varied. Other parameters are fixed with the
following values (these values correspond to lean propane-air flames ϕ = 0.8.):

Fr = 10.58 Pr = 0.9 γ = 0.854

λ2 = 2.62 H = 0.69 J = 1.62 (15)
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(a) (b)

(c) (d)

FIG. 3. Dependence of the restabilization and parametric thresholds to Ma. (a) ũ∗
I and ũ∗

II vs Ma at small
forcing frequency. (b) ũ∗

I and ũ∗
II vs Ma at high forcing frequency. (c) k̃∗

I and k̃∗
II vs Ma at small forcing

frequency. (d) k̃∗
I and k̃∗

II vs Ma at high forcing frequency.

1. Threshold dependency on Markstein number

First, the parameters given in (15) and the forcing frequency ω̃a are fixed and the Ma value is
varied from Ma = 2 to Ma = 5.5. For each Ma value, the bottom point of the parametric zone and
the top point of the Darrieus-Landau zone are evaluated numerically. The obtained results are shown
on Figs. 3(c) and 3(d) for two different values of the forcing frequency. When Ma increases, both the
stabilization and the parametric thresholds drift toward larger wavelengths. This is due to the fact
that for larger Ma, the small wavelengths are more damped by diffusive effects. This tendency is
weaker for k̃∗

I than for k̃∗
II . On the other hand, two opposite trends are observed for ũ∗

I and ũ∗
II . When

Ma is increased, the restabilization (respectively the parametric) threshold is decreased (respectively
increased). The restabilization zone that occurs when ũ∗

II > ũ∗
I is therefore larger at high Ma and

tends to be completely suppressed when Ma is decreased at low frequency [see Fig. 3(a)]. This trend
is due to the dependency of the damping coefficient c in the oscillator equation (2) on the Markstein
number. When Ma decreases, the damping is reduced too and the parametric zone goes down [for
zero damping (c = 0) ũ∗

II → 0]. At high frequency [see Fig. 3(b)], the variation of ũ∗
II with Ma

is strong whereas the ũ∗
I is weakly dependent on Ma. The wavelength at the parametric instability

threshold is smaller than that of the DL, provided that the forcing frequency is sufficiently large [see
Fig. 3(d)]. However, at low forcing frequency, and especially at a low Markstein number, the DL
wavelength may be smaller than that of the parametric instability [see Fig. 3(c)].

2. Threshold dependence on forcing frequency

The same kind of analysis is now performed to study the dependency of the threshold values
on forcing frequency. The Markstein number is now fixed (three different values are reported)
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(a) (b)

(c) (d)

FIG. 4. Comparison between experimental and theoretical threshold values with respect to the nondimen-
sional forcing frequency ω̃a. Theoretical data for different Markstein number values are reported in shades of
red, and experimental data for different equivalence ratios ϕ are reported in shades of gray. (a) Comparison
of the restabilization threshold u∗

I . (b) Comparison of the restabilization threshold u∗
II . (c) Comparison of the

last unstable reduced wave number k∗
I before restabilization. (d) Comparison of the first unstable reduced wave

number k∗
II above the parametric threshold.

and the reduced forcing frequency is varied over one order of magnitude. This kind of parametric
exploration has already been presented in [13] Fig. 4 and in [28] Fig. 11 for the parametric threshold
(u∗

II , k∗
II ). Their results are recalled now for the purpose of the following discussion. We also present

the restabilization threshold dependency on the forcing frequency; the results are plotted in Fig. 4.
As shown, the restabilization threshold (̃k∗

I , ũ∗
I ) is frequency dependent only at small frequency

values. This property is consistent with the theory developed by Bychkov in [29], which predicts no
frequency dependency for the DL zone (this analysis is asymptotically exact in the limit ω̃a � k̃

√
a).

On the other hand, the threshold of the parametric zone exhibits a strong linear dependence on ω̃a.
The variation is even more pronounced when the Markstein number is high. As the theory predicts
a linear increasing parametric threshold ũ∗

II and a constant threshold ũ∗
I , all flames should exhibit

a restabilization zone at high frequency (i.e., a range of forcing for which the flame is completely
flattened). As we shall see in the following, this is not what we observe in our experiments.

IV. EXPERIMENTAL RESULTS

As we are interested in measuring the flattening and the parametric thresholds experimentally, we
want to analyze flames that admit a restabilization zone (i.e., u∗

I < u∗
II ) so that these thresholds can

be measured from a flat front. Lean heavy hydrocarbon-air flames typically have a large Markstein
number and therefore admit a restabilization zone on a larger range of frequencies. Here we
perform lean propane-air flame experiments with three different equivalence ratios. The experiment
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TABLE I. Parameters corresponding to each experiment. The equivalence ratio ϕ is prescribed using
Bronkhorst mass flow regulators. The forcing frequency fshaker is prescribed by adjusting the shaker frequency.
The nondimensional angular frequency ω̃a is computed as ω̃a = 2π fshakerτL . The laminar flame speed uL is
taken from [30]. The expansion parameter γ is computed using CANTERA [31]. The Markstein number Ma is
taken from [33]. Finally, J and H are computed following their theoretical expression recalled in the main
text.

ϕ fshaker ω̃a uL γ Ma Fr λ2 J H Rest Rest th

0.8 63 Hz 0.096 0.28 m s−1 0.854 4.28 10.58 2.62 1.62 0.69 y y
0.8 116 Hz 0.186 0.28 m s−1 0.854 4.28 10.58 2.62 1.62 0.69 y y
0.8 156 Hz 0.250 0.28 m s−1 0.854 4.28 10.58 2.62 1.62 0.69 y y
0.8 400 Hz 0.641 0.28 m s−1 0.854 4.28 10.58 2.62 1.62 0.69 y y
0.9 63 Hz 0.058 0.36 m s−1 0.863 4.21 15.42 2.7 1.7 0.72 n n
0.9 400 Hz 0.388 0.36 m s−1 0.863 4.21 15.42 2.7 1.7 0.72 y y
1.0 63 Hz 0.047 0.40 m s−1 0.868 3.69 18.06 2.75 1.75 0.74 n n
1.0 400 Hz 0.314 0.40 m s−1 0.868 3.69 18.06 2.75 1.75 0.74 n y

is performed several times for each flame, adjusting the shaker intensity between each run. This is
done in order to find the appropriate value to reach the parametric instability threshold in the very
vicinity of the antinode of the mode. This setup allows the generation of flow oscillations that go
from ũa ≈ 0 (nodes) to ũa = ũ∗

II (antinodes). In this way, the flame experiences all of the interesting
ũa range during its propagation. Here we perform the threshold measurements for different flames at
different forcing frequencies. The results are then compared to theoretical values. To compute these
theoretical thresholds, the laminar flame speeds are taken from Bosschaart and de Goey [30], the
expansion ratios are taken from a numerical resolution of the flame structure using the CANTERA

software [31] with a complex chemical-kinetic San Diego mechanism [32], and the Markstein
numbers are taken from Searby and Quinard [33]. The resulting set of parameters is summarized in
Table I and here:

Dth = 2 × 10−5 m2 s−1, g = 9.81 m2 s−2, Pr = 0.9, (16)

dL = Dth/uL, τL = Dth/u2
L, ω̃a = 2πτL fshaker, Fr = uL/

√
gdL. (17)

The first thing to observe as a qualitative comparison between theory and experiments is the
existence or absence of a stabilization zone (i.e., u∗

I < u∗
II ). For each type of experiment, this

conclusion has been summarized in the last two columns of the above table. The columns are noted
“y” if u∗

I < u∗
II and “n” in the opposite case. The comparison between the “Rest” and the “Rest

th” columns gives the agreement between experiments and theory, respectively. The agreement is
satisfying for all the flames we analyzed, except for the case where ϕ = 1.0 with forcing frequency
fshaker = 400 Hz.

The comparison between experimental and theoretical thresholds is visible on Fig. 5, which
shows the ũ∗ and the k̃∗ values for three different equivalence ratios at fixed forcing frequency
fshaker = 400 Hz. Despite the fact that the value for fshaker is fixed, it is important to note that the
reduced forcing frequency ω̃a is not.

For the restabilization threshold we observe that both the k∗
I and u∗

I values remain nearly constant
when the equivalence ratio is increased [Figs. 5(a) and 5(c)]. This is in good agreement with the
trend predicted by theory (red curve). Looking now at the actual values, we remark that the measured
u∗

I values are substantially lower than those predicted by theory. On the other hand, the measured k∗
I

values are in relatively good agreement.
For the parametric threshold, our measurements indicate that u∗

II increases with the equivalence
ratio [Fig. 5(b)] while k∗

II [Fig. 5(d)] decreases. This is not the trend predicted by theory, where u∗
II
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(a) (b)

(c) (d)

FIG. 5. Comparison of experimental thresholds (gray) with those predicted by Searby & Rochwerger
theory (red). For the three cases presented here the forcing frequency is fshaker = 400 Hz. A. Comparison of
the restabilization threshold for propane-air flame with different equivalence ratios ϕ. (b) Same for parametric
thresholds. (c) Comparison of the last unstable wave number at the restabilization threshold. (d) First unstable
wave number at the parametric threshold.

is expected to decrease with the equivalence ratio and k∗
II is expected to remain nearly constant for

these flames at this forcing frequency.
These data and additional ones at other forcing frequencies fshaker are also reported in Fig. 4

in terms of the nondimensional forcing frequency ω̃a. As mentioned in the previous section, the
theoretical thresholds on this figure have been computed for three different Markstein numbers and
with all the other parameters corresponding to a Propane-air flame with equivalence ratio ϕ = 0.8.
As Ma = 4.28 corresponds to the Marsktein value associated with this type of flame (see Table I),
we theoretically expect the experimental data associated with equivalence ratio ϕ = 0.8 to collapse
on the theoretical red curve Ma = 4.28. The two other equivalence ratios studied in the present
experiments are not expected to collapse on any of the theoretical curves, as they not only have a
different Markstein number but also different Fr, J , and H. However, we shall see that analyzing
the trend of the evolution of their thresholds with ω̃a provides interesting information.

Among the flames studied here, complete restabilization is observed only for the flame with an
equivalence ratio ϕ = 0.8 (at all the forcing frequencies studied here) and for the flame ϕ = 0.9
at low frequency. For the case ϕ = 0.8, the restabilization threshold remains nearly constant when
ω̃a is increased, both in terms of acoustic speed (̃u∗

I ) and wave number (̃k∗
I ). This trend is in good

agreement with the theoretical results that predict a constant restabilization threshold except in a
thin boundary layer at low forcing frequency where both ũ∗

I and k̃∗
I decrease drastically [Figs. 4(a)

and 4(c)]. We note that this boundary layer is not observed in our experimental data. Comparing the
actual values of these thresholds with the theoretical ones, we note that the agreement is satisfying
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for the wave numbers [Fig. 4(c)] but not for the acoustic forcing speed [Fig. 4(a)], where the
measured thresholds are substantially lower than the expected ones.

Looking now at the results obtained for the parametric instability threshold [Figs. 4(b) and 4(d)],
we observe that for the three equivalence ratios studied here the measured values for ũ∗

II remain
nearly constant when ω̃a is increased, while the theory predicts a linearly increasing threshold value
if Ma remains constant [red curves Fig. 4(b)]. For the wave numbers, we observe that k̃∗

II increases
with the forcing frequency for the three equivalence ratios analyzed here [Fig. 4(d)]. This tendency
is in relatively good agreement with what the theory predicts, although the experimental data seem
to increase faster than the theoretical.

V. DISCUSSION

The experimental measurements presented in the previous section display major discrepancies
with the theoretical predictions given by the Searby & Rochwerger theory. In particular, for the
restabilization threshold, the agreement on the wave number values k̃∗

I is satisfying [Figs. 4(c) and
5(c)]. However, while the experimental values for ũ∗

I [Figs. 4(a) and 5(a)] show the correct trend
(except at very low frequency), the measured values are substantially lower than those predicted
by theory. This large discrepancy cannot be explained by a misestimation of the actual Ma and/or
ω̃a associated with the experimental flame, as this threshold is not very dependent on these two
quantities (see parametric study carried out in Sec. III B). Moreover, as pointed out earlier, while
some discrepancies are observed on ũ∗

I , the agreement on k̃∗
I is satisfying. Here we argue that

heat losses might be responsible for the discrepancy observed between experiments and theory
on the restabilization threshold. Indeed, (2) was obtained under an adiabatic hypothesis. In our
apparatus the flame is confined between two walls and the heat losses play an important role in the
dynamics [34]. Heat losses were shown to inhibit the standard Darrieus-Landau instability [2]. With
the present type of burner, they were shown to affect the entire range of unstable wave numbers
quite uniformly. Mathematically, this corresponds to the addition of a negative growth rate to the
entire range of unstable wavelengths [34]. A flame in this apparatus is therefore less unstable than
its adiabatic counterpart and is easier to restabilize (i.e., it requires a smaller forcing amplitude ũa

to observe restabilization). This explains the smaller values of ũ∗
I measured in our experiments.

Meanwhile, as these heat losses are affecting all the wave numbers uniformly, a good agreement
on k̃∗

I is expected with the adiabatic theory. This is what we observe in our experiments [Figs. 3(c)
and 4(c)]. Finally, the steep decrease of both ũ∗

I and k̃∗
I predicted by theory and not observed with

our experimental data [Figs. 4(a) and 4(c)] can also be explained by heat losses. Heat losses tend to
decrease the actual uL and therefore, by using the adiabatic uL from [30] to nondimensionalize the
forcing frequency, we are underestimating the actual ω̃a associated with our experimental flames.
This means that the experimental data on Figs. 4(a) and 4(c) should be shifted horizontally towards
higher ω̃a values and are probably already in the frequency range where ũ∗

I and k̃∗
I are frequency

independent. To validate this hypothesis, in future works it might be interesting to search for this
boundary layer predicted by theory at low frequency by forcing these flames with lower frequencies.
This could be achieved in a Hele-Shaw burner that uses walls with a lower fundamental frequency
(for example, using plastic walls instead of glass walls).

Concerning the parametric threshold (̃u∗
II , k̃∗

II ), the theory does not even describe the correct
trend observed in our experimental measurements. In particular, ũ∗

II is expected to increase linearly
with the forcing frequency. In our experiments we have observed that the thresholds remain
nearly constant when the frequency is increased. The theoretical red curves are computed for a
constant Ma number, but the actual Markstein value associated with our experimental flames is
apparently changing when the forcing frequency is increased. According to Joulin’s theory, the
Lewis component is disappearing when the acoustic time is no longer small compared to the transit
time. For these lean propane-air flames, this corresponds to Markstein values that decrease when
the frequency is increased. This is exactly what we observe with our measurements. For the speed
ũ∗

II , the threshold remains nearly constant instead of growing linearly because Ma is decreasing with
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frequency. In practice it corresponds to a flame starting at a darker red curve (high Markstein value)
and moving towards the lighter red curves (lower Markstein values). This is corroborated by the
k̃∗

II measurements that display a steeper slope than the theoretical curves for the same reason: the
flames are evolving from the darker red curves to the lighter ones when the frequency is increased
[see Figs. 4(b) and 4(d)]. This would also explain the incorrect trend observed when the dimensional
forcing frequency fshaker is fixed and the equivalence ratio ϕ is varied. For these lean propane-air
flames both Ma and ω̃a are decreasing when the equivalence ratio is increased from ϕ = 0.8 to
ϕ = 1.0. At fixed Ma, based on theory, ũ∗

II is expected to increase with ω̃a [see Fig. 4(b)]. At
fixed frequency, ũ∗

II is expected to increase with Ma. By decreasing Ma and ω̃a, we therefore have
two different effects that are supposed to make ũ∗

II decrease, which explains the theoretical trend
observed in Fig. 5(b). However, if Ma is indeed decreasing with ω̃a, as expected by Joulin’s theory,
it means that we are overestimating Ma by taking the low frequency value obtained in [10,11] and
therefore overestimating u∗

II . At fixed fshaker, ω̃a is higher at ϕ = 0.8 than at higher equivalence
ratio and we are therefore overestimating Ma by a larger amount. This leads in turn to a larger
overestimation of u∗

II than at a higher equivalence ratio, as observed in Fig. 5.
Finally, we note that our experiments are compared to linear stability analysis, although no total

restabilization zone could be observed in some cases [(ϕ = 0.9, fshaker = 63 Hz), (ϕ = 1.0, fshaker =
63 Hz) and (ϕ = 1.0, fshaker = 400 Hz)]. In those cases, where the parametric instability does not
appear from a flat front but from a Darrieus-Landau wrinkled one [see Fig. 2(h)], the oscillator
model described by (2) is no longer valid and nonlinear effects could have a non-negligible influence
on the threshold values (see [35,36]).

VI. CONCLUSION

In this paper, the flame interaction with a periodic time dependent flow has been studied
experimentally using the flame and structure coupling uncovered in [23]. The measured parametric
restabilization and destabilization thresholds have been compared to those given by the theory
introduced in Searby and Rochwerger [13]. Both the u∗

I and u∗
II values from our experiments are

much smaller than those predicted by theory. However, the agreement on k∗
I and k∗

II is surprisingly
good. This trend has been attributed to thermal losses which lower the DL growth rate quite
uniformly over the range of unstable wave numbers. In addition, our measurements suggest a nearly
constant parametric threshold when the forcing frequency ω̃a is increased. This is in contradiction
with theory, which predicts a linear increase of ũ∗

II with ω̃a. This disagreement may be explained by
a decrease of the Markstein number when the frequency increases, as predicted in [2] (for flames
with Le > 1) and already observed experimentally and numerically in previous studies [13,14,37].
Our results constitute a confirmation of the results obtained in these former studies in a completely
different kind of apparatus and suggest that frequency dependent Markstein numbers should be used
in combustion models for time dependent flows.
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