
Driving a stepper motor with Arduino

Basile Radisson, Yi Man, Eva Kanso
Department of Aerospace and Mechanical Engineering,

University of Southern California, Los Angeles, CA 90089-1191, USA
(Dated: August 6, 2021)

In this tutorial we provide the basic information needed to drive a stepper motor in a well con-
trolled manner. We describe the components and the code necessary to control the stepper. The
control part is based on the Arduino platform which is open source, well documented and provides
an excellent hardware-software solution for electronic project.

I. INTRODUCTION

In the following we provide a short tutorial on how to drive a stepper motor in a well controlled manner (i.e
controlling the speed of the stepper according to a given mathematical function) using Arduino. One of the main
interest of using Arduino for this kind of project is that it provides a all-in-one hardware-software solution. As an
open-source project, Arduino is backed-up by a very active community that provides a lot of helpful resources online.
Moreover, all the software part is free and the Arduino compatible boards can be usually found at a very affordable
price which makes Arduino a very low-cost solution compared to other proprietary ones.

II. HARDWARE AND COMPONENTS

The hardware required to realize this project is composed of four main components, and can be purchased for about
one hundred dollars. It is composed of the stepper itself, a microstep driver, a power supply and a Arduino board.
In this section we provide information and resources on the role of each of these components.

A. Stepper motor

The first component of the setup is the stepper motor itself. As suggested by the name, a stepper motor is a
motor that rotates by precise increments called ”steps”. This makes stepper motors very desirable for application
where accurate positioning is needed. They are used in 3D printers, CNC machines or in the autofocus in digital
cameras for example. Stepper motors are controlled by applying pulses of DC electricity to their internal coils. Each
pulses advances the motor by one step. The number of steps per full rotation (or equivalently the angle traveled at
each steps) is a characteristic of the motor. The more steps per revolution the more precise the control. The most
standard steppers on the market have 200 steps/revolution (1.8◦ per step). For more precision the number of steps
per revolution can be increased using a procedure called microstepping. It allows to move the motor in fraction of
the actual step by adjusting the current in the different coils of the stepper. Precise microstepping can be achieved
easily using an industrial microstep driver (see next section).

The choice of the stepper motor depends on your application and a lot of helpful resources can be found online
to help you select the right stepper for your project (e.g see [1]). One of the main characteristics you want to look
at is the torque-speed curve in order to determine whether or not the motor is able to provide enough torque at the
desired speed for your project.

In this project, we are going to use a NEMA 23 bi-polar stepper motor with a standard 200steps/rev.

B. Microstep driver

A microstep driver is an electronic device that precisely divide the current between the motor phases in order to
position the rotor at smaller increments between full steps. Increasing the number of step per rotation increases the
accuracy of the positionning and reduces vibrations. However, as more steps are needed to achieve a full revolution
of the shaft, it decreases the maximal speed you can reach for a given setup.

Industrial microstepper drivers usually come with switches that allow to easily change the number of step per
revolution. There are a large number of microstep drivers on the market. Here again you can find helpful resources
online to help you choosing the right one for your project [1]. Generally speaking, the microstep driver must be chosen
based on the characteristics of your stepper motor.

In this project, we are going to use a driver Wantai DQ542MA that can be adjusted from 400 steps/rev to 25,600
steps/rev.

C. Power supply

The stepper driver and the motor must be supplied with DC current with an appropriate voltage. For this project
we are going to use a standard 24V DC power supply.

cb This work is licensed under a CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/

Figure 1. Required hardware components for this project and wiring diagram

D. Arduino board

The Arduino board is the main component of your setup. It is composed of a microcontroller and pins that can be
used to acquire/send signal from/to external devices.

Theoretically, any standard Arduino board can be used to control a stepper motor, including the basic and most
popular Arduino UNO board. However, the latter is very limited in term of memory which can become a problem
when you want to drive a stepper at very high-speed, as we shall see.

In the following we will use both a Arduino UNO and a Arduino DUE board.

III. SOFTWARE AND CODE

The board must be told what to do by sending information to the microcontroller. This is done by using Arduino
programming language that is send to the board through the Arduino IDE.

The Arduino programming language was specifically designed to communicate information to microcontrollers.
The language itself is very close to the C programming language and a lot of the C libraries are available with
Arduino. Arduino also includes a large number of additional libraries developed by the Arduino community for
different applications. All these libraries can be easily installed using the Arduino IDE.

The Arduino IDE provides an all-in-one environment to write a program (Arduino programs are called ”sketches”)
compile it and upload it to the board. It can be installed on any platform (Windows, Mac or Linux) following the
instructions provided on the Arduino website [2].

IV. DRIVING A STEPPER MOTOR : BASICS

As mentioned earlier a stepper motor is driven by sending pulses of DC current that makes the motor to rotate by
the angle corresponding to one step (or one fraction of a step if using microstepping).

cb This work is licensed under a CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/

A. Pulse and direction

There are two different kind of pulses that we want to send to the stepper motor through the driver. One is the
directional pulse (DIR) that tells the motor in which direction we want to rotate and the other is the actual pulse
(PUL) that tells the motor to rotate by one step. Therefore, we are going to use two pins as output on the Arduino
board to send these two types of information to the motor. The wiring of the all setup is described on the wiring
diagram on Fig. 1. Everything passes through the stepper driver. The two phases (here we are using a bipolar stepper
motor) of the motor are wired to the corresponding pins on the driver. The DC power supply is wired to the two
corresponding pins (DC+ and DC-) on the driver (no surprise here). Then comes the interesting part where the driver
is wired to the board. We are using two digital pins of the Arduino UNO board here: pins 8 and 9. These two pins
were chosen for speed consideration (see below) but technically any of the other digital pins can be used instead. Pin
8 is wired to the PUL+ pin on the driver and will be used to send the signal that tells the motor to rotate one step.
Pin 9 is wired to the DIR+ pin on the driver and will be used to send the directional pulse. Finally, DIR- and PUL-
on the driver and the GND pin on the Arduino board are all wired to the ground and the USB port on the Arduino
board is connected to the computer. The latter both powers the board and allows to send information to the board.

B. Control of the time interval between two pulses

Now that everything is wired properly we can turn to the initial goal of this tutorial which is driving the motor in a
well controlled manner. More precisely, we want to control the angular position θ of the motor so that the evolution
in time of the position θ(t) follows a prescribed mathematical function. In the following we’ll describe the procedure
to drive the motor into a sinusoidal motion but the exact same procedure applies for any invertible function on a
particular domain. As an example, here we want the position of the motor to be described by :

θ(t) = −A cos(ωt) +A, (1)

where A is the amplitude of the displacement and ω is the pulsation associated with the sinusoidal motion.
However, as mentioned earlier the only kind of action we can ask the motor to perform is : ”rotate by one step in a
given direction (i.e clockwise or counterclockwise)”. This means that θ can take only discrete values that are multiple
of the step angle ∆θ such that

θn = n∆θ = n
2π

Nppr
= −A cos(ωtn) +A, {n ∈ N, 0 ≤ n ≤ N}, (2)

where θn is the angular position at step n, Nppr is the number of step per full revolution (determined by the setting
of the microstep driver), N = 2A/∆θ is the number of step we want the motor to move on half a period and tn is
the time at which the stepper must be rotated from the angular position θn−1 to the angular position θn. The latter
is the quantity of interest as it determines the time at which we want to tell the motor to rotate by one step. It is
simply obtained by inverting (2) such that :

tn =
1

ω
arccos

(
1− θn

A

)
, {n ∈ N, 0 ≤ n ≤ N}, (3)

As we shall see, with Arduino it is easy to set a waiting time between two successive operations and it is therefore
more convenient to compute the waiting time between two steps which is obtained using backward finite differences :

∆tn = tn − tn−1, {n ∈ N, 1 ≤ n ≤ N}, (4)

C. Basic Arduino implementation

Now that we have obtained the time to wait between two successive steps for the motor to achieve the desired
sinusoidal motion, we can implement that in the Arduino IDE. The implementation is very simple, we simply need
to define the pins we are using as the directional pin and the rotation pin on the Arduino board and then send the
appropriate signal to these pins when we want the motor to rotate by one step. The code is given below :

1 #include <math.h> // import library math.h from C in order to use trigonometric function

2 #define stepPin 8 //we define stepPin as the pin 8

3 #define dirPin 9 //we define dirPin as the pin 9

cb This work is licensed under a CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/

4

5 float T=500.0; // period of the forcing in sec

6 float fForcing =1/T; // frequency of the forcing

7 float omega =2.*PI*fForcing; // pulsation of the forcing

8 unsigned int Nppr =800; // number of pulses per full rotation of the motor (this is set using the

switches on the driver)

9 float nbRot =5.; // number of full rotations of the motor before reversing direction of rotation

10 unsigned int N=round(nbRot*Nppr /2); // amplitude of the oscillations (in term of motor steps)

11 int nb_oscillations =1;// number of periods

12 float tNext; //time at the next step

13 float tNow =0; //time now

14 long deltaT;

15

16 //the setup () function in Arduino is the function where we want to put the commands that are

executed only one time (see Arduino documentation for more details)

17

18 void setup()

19 {

20 Serial.begin (9600);

21 pinMode (stepPin , OUTPUT); //set the pulse pin as output

22 pinMode (dirPin , OUTPUT); //set the direction pin as output

23 delay (150); //we wait 150ms before starting the loop

24

25

26 }

27

28 //the commands placed in the loop function in Arduino are repeated indefinitely until something

breaks the loop or the board is reset.

29 void loop()

30 {

31 for(int i=0; i<nb_oscillations; i++)

32 {

33 tNow =0;

34 digitalWrite(dirPin , LOW); //set the Dir pin to low which corresponds to the

counterclockwise direction

35 for(unsigned long k=1; k<2*N+1; k++)

36 {

37 tNext =(1./ omega)*acos(1.-float(k)/N)*pow (10,6);// compute the time at which the motor

should rotate to the next position in microseconds

38 deltaT=int(round(tNext -tNow)); // compute the waiting time

39 delayMicroseconds(deltaT -10); //we wait for the computed deltaT -10 microseconds

40 digitalWrite(stepPin , HIGH); //set the Step pin to high

41 delayMicroseconds (10); //wait for 10 microseconds

42 digitalWrite(stepPin , LOW); //set the step pin back to low

43 tNow=tNext; // update the current time

44 }

45 //when we get out of this loop we must revert the direction of rotation and redo the same

thing to come back to the initial position

46

47 tNow =0;

48 digitalWrite(dirPin , HIGH); //set the Dir pin to high which corresponds to the clockwise

direction

49 for(unsigned long k=1; k<2*N+1; k++)

50 {

51 tNext =(1./ omega)*acos(1.-float(k)/N)*pow (10,6);// compute the time at which the motor

should rotate to the next position in microseconds

52 deltaT=int(round(tNext -tNow)); // compute the waiting time

53 delayMicroseconds(deltaT -10); //we wait for the computed deltaT -10 microseconds

54 digitalWrite(stepPin , HIGH); //set the Step pin to high

55 delayMicroseconds (10); //wait for 10 microseconds

56 digitalWrite(stepPin , LOW); //set the step pin back to low

57 tNow=tNext; // update the current time

58 }

59 }

60

61 exit (0);

62 }

63

The code is pretty straightforward, the only thing that need to be discussed in detail is the core loop in the function

cb This work is licensed under a CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/

Figure 2. Typical displacement and time intervals Left: typical evolution of the displacement (in number of steps) of the shaft over
one period of oscillations. Right : corresponding waiting time that must be applied between two successive steps for the motor to describe
the motion associated with the left curve.

loop(). The loop() function is one of the main Arduino functions. All the commands in this function are repeated
indefinitely until something breaks the program execution. Here, we don’t want the motor to run indefinitely but for
a given number of period (selected by the user by specifying the value of the variable nb oscillations). Therefore,
we use a first for loop that is executed nb oscillations times before the command exit(0) breaks the execution.
Inside this for loop, are the commands for the motor to perform one period of oscillations. This section is composed
of two identical for loops - each one corresponding to half a period of oscillations - where only the direction of
rotation is reversed. The two main Arduino functions we are using in this code are the functions digitalWrite()
and delayMicroseconds().

The function digitalWrite() allows to assign the value HIGH or LOW to a given pin. For a pin configured as OUTPUT,
setting the pin to HIGH will set the current to 5V whereas setting the pin to LOW will set the current to the ground value
(0V) [3]. As mentioned earlier, we have two pins to deal with here : the directional and the step pin. The directional
pin set the direction of rotation (LOW (respectively HIGH) for counterclockwise (respectively clockwise) rotation of the
motorshaft). Before the first loop, we therefore set the motor to rotate in the counterclockwise direction (l.34 in the
code) then enter the first for loop where the motor is accelerated and decelerated in order to get half a period of the
desired sinusoid. The direction of rotation is then reversed (l.48 in the code) and the same for loop is repeated to
complete one period of oscillation. In the for loop itself, that’s where we send the pulses to the step pin to perform
rotation of the motor. A step rotation of the motor is achieved by sending a step signal to the step pin. This is done
by setting the step pin to HIGH for a few microseconds and then turning it back to LOW (l.40 to l.42 in the code).
The short delay (10 microseconds) applied between the two digitalWrite() is there to ensure that there is enough
time for the current to reach the HIGH value before returning to LOW. Between two steps, we need to wait a time ∆t
as given by (4). This waiting time is computed on the go (l. 37 in the code) and directly applied using the function
delayMicroseconds() (l.39 in the code). Note that we substract the 10 microseconds already applied between the
two digitalWrite() to the computed delay deltaT in order to satisfy the total duration between two steps. With
this code the motor will theoretically achieved the desired sinusoidal motion.

But here comes the problem: we have implicitly considered that all the other commands in the code except
delayMicroseconds() were executed instantaneously so that we don’t need to consider their execution time. There-
fore, the code above remains valid only if the smallest ∆t value along a period of oscillation remains large compared
to the typical time of execution of all the other commands in the for loop. This assumption will obviously fell off for
application where the motor must be driven at very high speed (i.e a large number of steps per unit of time).

In the example above, the desired sinusoid has an amplitude of 2000 motor steps (see Fig. 2 left panel) and a
period T=500s. Which means the motor has to be rotated by 8000 steps in 500s. This corresponds to an average
time of ∆tavg = 6.25 × 10−2s. But as with a sinusoidal motion, the motor starts from a zero speed then accelerate
and decelerate to zero over one half of a period, the critical ∆tcrit is actually shorter. As an example the evolution of
∆t over one period of oscillations (computed from (4)) is plotted on Fig. 2 right panel. The shortest ∆t value for this
set of parameters is ∆tcrit ≈ 3.98× 10−2s. This time must be large compared to the execution time of the commands
in the for loop for the code presented above to achieve the desired sinusoidal motion.

cb This work is licensed under a CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/

D. Measuring execution time with Arduino

To get an idea of the execution time of the different commands in the for loop, we need to use some functions to
measure this time. There are different functions in Arduino that allow to measure execution time. The most common
are the functions millis() and micros(). These two functions work the same way and return the current time but
with a different resolution (see [4] for details). Here, we are going to use the micros() function with the following
script :

1 #include <math.h> // import library math.h from C in order to use trigonometric function

2 #define stepPin 8 //we define stepPin as the pin 8

3 #define dirPin 9 //we define dirPin as the pin 9

4

5 float T=500.0; // period of the forcing in sec

6 float fForcing =1/T; // frequency of the forcing

7 float omega =2.*PI*fForcing; // pulsation of the forcing

8 unsigned int Nppr =800; // number of pulses per full rotation of the motor (this is set using the

switches on the driver)

9 float nbRot =5.; // number of full rotations of the motor before reversing direction of rotation

10 unsigned int N=round(nbRot*Nppr /2); // amplitude of the oscillations (in term of motor steps)

11 int nb_oscillations =1;// number of periods

12 float tNext; //time at the next step

13 float tNow =0; //time now

14 long deltaT; //time to wait

15

16 void setup()

17 {

18 Serial.begin (9600); // opens serial port , sets data rate to 9600 bps

19 pinMode(stepPin , OUTPUT); // set the stepPin as OUTPUT

20 pinMode(dirPin , OUTPUT); // set the dirPin as OUTPUT

21

22 unsigned long timeBegin = micros (); // store the current time before execution of the loop

23

24 for(unsigned long k=1; k <1000; k++) // execute the for loop 1000 times

25 {

26 tNext =(1./ omega)*acos(1.-float(k)/N)*pow (10,6);// compute the time at which the motor should

rotate to the next position in microseconds

27 deltaT=int(round(tNext -tNow)); // compute the waiting time

28 digitalWrite(stepPin , HIGH); //set the Step pin to high

29 digitalWrite(stepPin , LOW); //set the step pin back to low

30 tNow=tNext; // update the current time

31 }

32

33 unsigned long timeEnd = micros (); // store the current time after execution of the loop

34 unsigned long duration = timeEnd - timeBegin;

35 double loopDuration = (double)duration / 1000; // compute the duration per loop

36

37 // write to the serial monitor

38 Serial.print("Execution time per loop: ");

39 Serial.print(loopDuration);

40 Serial.println(" s ");

41

42 }

43

44 void loop() {}

The preamble of the script is identical to the previous code, only the content of the setup() and loop() functions has
changed. The loop() function is now empty and we have moved the core for loop of the previous code to the setup()
function in order to measure its typical execution time. In the for loop, we got rid of the delayMicroseconds()
commands as the purpose is to measure the execution time of the other commands. The time of execution is measured
by measuring the current time using the function micros() before entering the loop, then looping 1000 times before
measuring the current time again after the execution. The time per loop is then computed from the difference between
these two times and send to the Serial monitor (To see the result, the user must go to tools/serial monitor in the
Arduino IDE and execute the code). With a Arduino DUE board, we obtained a time of 121µs per loop (the time
would be larger with a Arduino UNO board). This time is still quite small compared to the shortest ∆t computed
from (4) with this set of parameters and the motor will therefore execute the expected motion if triggered with this
code. But what if we now want the motor to execute oscillations of the same amplitude (2000 steps)
but over a period of T = 1.0s instead of T = 500s ? In this case the critical waiting time between two steps at

cb This work is licensed under a CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/

the point where the speed of the motor is maximal would be ∆tcrit ≈ 80µs which is shorter than the typical time we
need to execute the other commands in the for loop. Which means that even if we remove the waiting time introduced
with the function delayMicroseconds(), the execution time will be too slow for the motor to achieve the desired
motion. In the next section, we show how this basic script can be optimized to achieve the desired motion.

V. ARDUINO SCRIPT OPTIMISATION : INCREASING SPEED

There are two main things that can be optimized in the core for loop of the previous program : (i) the waiting time
∆t is computed on the go at each step. This is a slow operation and some precious execution time could be saved
by computing the full series of waiting time ∆t over one period beforehand and storing them in an array, as we shall
see. (ii) the function digitalWrite() is a high level and convenient method to manipulate the pin values on a Arduino
board but it is slow. Faster pin manipulation can be achieved through lower level manipulation of the pins.

A. Computing the waiting time values beforehand : a memory problem

Computing the value of ∆t is by far the most expensive operation in the for loop. Using the script we used to get
the typical execution time of the for loop but now removing the two digitalWrite() lines leads to a time of execution
of 116.81µs. The execution time of the loop is therefore largely dominated by the execution time of this operation.
Indeed, the acos() function is an expensive computation that requires a large number of operations. An obvious way
to optimize the code is to get rid of these operations by computing the ∆t values beforehand and storing them in an
array. However, we now have to face a memory problem. Standard Arduino boards come with a very low amount
of RAM memory compared to even the most basic recent computer. For example the Arduino UNO Rev 3 has 2kB
of RAM memory whereas the most basic Raspberry Pi 4 has 2GB instead. This means that memory optimization
must be considered much more carefully when you’re coding with Arduino than with normal coding on a standard
computer. In our example above, a full period of oscillation is composed of 8000 steps that can be decomposed in
4 identical sections of 2000 different values of ∆t. This means we have at least an array of 2000 integers containing
the ∆t values in microseconds which represents 2000× 2 = 4kB of memory (see appendix for a list of most standard
variables available with Arduino). This is already two times larger than the available RAM on a Arduino UNO (and
this is without counting the other variables in the program). This problem can be solved by reducing the number
of steps in order to have less ∆t values to store. This can be achieved by changing the microstepping setting on the
driver in order to achieve the same physical amplitude (same rotation angle) with less steps, but this obviously come
with a loss in precision and can increase the vibrations (see first section of this tutorial). Another option is to upgrade
the board to another one with more memory. For example the Arduino DUE has 96kB of RAM instead of 2kB for
the UNO. The latter is the solution adopted for this tutorial. The wiring of this board to the other components is
exactly the same as the one presented on the wiring diagram on Fig. 1 with the Arduino UNO board except that we
use pins 25 and 26 of the Arduino DUE instead of 8 and 9 on the Arduino UNO (but as mentioned earlier any of the
digital pins available can be used instead).

The optimized version of the code (but more expensive memory wise speaking) is now

1 #include <math.h>

2 #define stepPin 25 // declaration of the ste pin

3 #define dirPin 26 // declaration of the directional pin

4

5 float T=10.; // period of the forcing in sec

6 float fForcing =1/T;

7 float omega =2.*PI*fForcing;

8 unsigned int Nppr =800; // number of pulse per full rotation of the motor (this is set using the

switches on the driver)

9 float nbRot =5.; // number of full rotations of the motor before reversing direction of rotation

10 unsigned int N=round(nbRot*Nppr /2); // amplitude of the oscillations (in term of motor steps)

11 int nb_oscillations =1;// number of period during the all run

12 float tNext; //time at the next step

13 float tNow =0; //time now

14 int *deltaT =(int*) malloc (2*N*sizeof(int)); // allocate memory for an array in order to store the

waiting times

15

16

17 void setup()

18 {

19 Serial.begin (9600);

cb This work is licensed under a CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/

20 pinMode (stepPin , OUTPUT); //set the pulse pin as output

21 pinMode (dirPin , OUTPUT); //set the direction pin as output

22

23 // initialisation of the new array

24 for(unsigned long k=1; k<2*N+1; k++)

25 {

26 tNext =(1./ omega)*acos(1.-float(k)/N)*pow (10,6);

27 deltaT[k-1]= int(round(tNext -tNow));

28 tNow=tNext;

29 }

30

31 delay (1500);

32 }

33

34

35 void loop()

36 {

37 for(int i=0; i<nb_oscillations; i++)

38 {

39 digitalWrite(dirPin , LOW); //set the direction to counterclockwise

40 for(unsigned long k=1; k<2*N+1; k++)

41 {

42 delayMicroseconds(deltaT[k-1] -10); // we apply the delay by simply reading the

corresponding value in the array

43 digitalWrite(stepPin , HIGH); //send a pulse to the step pin

44 delayMicroseconds (10); //wait 10 microseconds to ensure the current reach its high

value

45 digitalWrite(stepPin , LOW); //the pin returns to its ground value

46 }

47

48 digitalWrite(dirPin , HIGH); // revert the direction of rotation

49 for(unsigned long k=1; k<2*N+1; k++)

50 {

51 delayMicroseconds(deltaT[k-1] -10); // we apply the delay by simply reading the

corresponding value in the array

52 digitalWrite(stepPin , HIGH); //send a pulse to the step pin

53 delayMicroseconds (10); //wait 10 microseconds to ensure the current reach its high

value

54 digitalWrite(stepPin , LOW); //the pin returns to its ground value

55 }

56 }

57 free(deltaT); //free up the allocated memory

58 exit (0); // breaks the execution

59 }

As can be seen, the only thing that has changed is that now we compute the ∆t beforehand and store them in an array
so that in the core loop of the script we just have to access the corresponding value in the array at each step. This
is way faster than computing these waiting times on the go as done in the previous script. It is difficult to measure
precisely the time taken to read the ∆t value in the array but we can get an order of magnitude with the following
script :

1 #include <math.h> // import library math.h from C in order to use trigonometric function

2 #define stepPin 25 //we define stepPin as the pin 25

3 #define dirPin 26 //we define dirPin as the pin 26

4

5 float T=1.; // period of the forcing in sec

6 float fForcing =1/T; // frequency of the forcing

7 float omega =2.*PI*fForcing; // pulsation of the forcing

8 unsigned int Nppr =800; // number of pulses per full rotation of the motor (this is set using the

switches on the driver)

9 float nbRot =5.; // number of full rotations of the motor before reversing direction of rotation

10 unsigned int N=round(nbRot*Nppr /2); // amplitude of the oscillations (in term of motor steps)

11 int nb_oscillations =1;// number of periods

12 float tNext; //time at the next step

13 float tNow =0; //time now

14 int *deltaT =(int*) malloc (2*N*sizeof(int)); //array to store the waiting time

15

16 void setup()

17 {

18 Serial.begin (9600);

cb This work is licensed under a CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/

19 pinMode(stepPin , OUTPUT);

20 pinMode(stepPin , OUTPUT);

21

22 // initialisation of the new array

23 for(unsigned long k=1; k<2*N+1; k++)

24 {

25 tNext =(1./ omega)*acos(1.-float(k)/N)*pow (10,6);

26 deltaT[k-1]= int(round(tNext -tNow));

27 tNow=tNext;

28 }

29

30 unsigned long timeBegin = micros ();

31 for(unsigned long k=1; k<2*N+1; k++)

32 {

33 delayMicroseconds(deltaT[k-1]);

34 }

35 unsigned long timeEnd = micros ();

36 unsigned long duration = timeEnd - timeBegin;

37 double loopDuration = (double)duration / (2*N);

38 free(deltaT);

39

40 Serial.print("Execution time per loop: ");

41 Serial.print(loopDuration);

42 Serial.println(" s ");

43 }

44 void loop() {}

Here, we generate the array with the set of ∆t corresponding to half a period of oscillations and we then loop over
this array and apply the appropriate delay by reading the waiting time in the array and passing it as argument to
the function delayMicroseconds(). In order to get an idea of the time taken by the memory reading process we
measure the average time per loop over half a period and compare it to the average ∆tavg = T/8000 (where 8000 is
the number of steps per period). We repeat the process for different values of the period T and compare the ∆tavg
expected to the actual ∆tm measured with the above script, the results are reported in the following array :

T (s) ∆tavg = T/8000(µs) ∆tm
1.0 125 125.41

0.1 12.5 12.57

0.01 1.25 1.57

As can be seen, with a period T = 1.0s, the average waiting time measured is almost identical to the expected one
which means the time needed to access the ∆t value in the memory is infinitesimal compared to the typical ∆t value.
The same remark can be made for the second case with a period T = 0.1s where a small delay is observed but
nothing that could severely affect the expected motion of the motor ultimately. However, for the last case, when
the expected waiting time ∆tavg becomes of the order of a microsecond, we note a significant delay in the measured
waiting time. However, this delay is not due to the time needed to access the ∆t value in the memory but to the
function delayMicroseconds() itself. Indeed, this function is given to be accurate for typical delay of 3µs and above.
Therefore, the time to obtain the ∆t values is no longer a problem. By computing it beforehand and storing it in
the memory instead of computing it on the go, we have improved the execution time of this operation from ≈ 100µs
to something smaller than a microsecond (actually memory readings are theoretically of the order of a few typical
clocktime which is about two order of magnitude smaller than a microsecond for a Arduino Due).

Now that we have optimized the most expensive operation in the core loop that drives the motor rotations, we can
turn to the optimization of the other operations.

B. Manipulating Arduino pins at a lower level : fast digitalWrite()

The other main operation that we had in the for loop, after computing and applying the appropriate delay, was
sending a pulse of current to the step pin. This was done by using a digitalWrite(stepPin, HIGH) followed by a
short delay and a digitalWrite(stepPin, LOW). From our earlier execution time measurements, we know that the
typical time taken by a digitalWrite() is about 2.2µs on our Arduino Due. This operation is even slower on a
Arduino Uno : about 3.4µs for pins 8-9 and a bit slower on pins 2-3 according to our measurements. As we have seen

cb This work is licensed under a CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/

in the previous section that we can achieve accurate delay as low as 3µs with the delayMicroseconds() function it
would be nice to reduce the time needed to manipulate the pins in order to be able to reach effective ∆t as low as a
few microseconds long. This can be done by manipulating pins at a lower level.

The digitalWrite() is a high-level and convenient function but it is pretty slow. Indeed, under the hood, it
performs several operations before actually changing the state of the pin [5]. Instead, we can directly manipulate
pin’s state using what is called direct port manipulation. This significantly improves the execution speed as we shall
see.

On a Arduino board, the pins are distributed on several different ports. For example, the Arduino UNO board
has 3 ports B, C and D with 8 pins per port. The pins can be directly manipulated by using the letter associated
with the corresponding port and the number of the pin. The mapping of the different pins on a given board can be
found easily online. For example, on a Arduino Uno the pins 0, 1, 2, 3, 4, 5, 6, 7 correspond to the pins 0, 1, 2, 3,
4, 5, 6, 7 of the port D, respectively. The pins 8, 9, 10, 11, 12, 13 correspond to the pins 0, 1, 2, 3, 4, 6 of the port
B, respectively.. To manipulate the state of the pin using direct port manipulation, you just need to know the letter
associated with the port and the number of the pin.

On a Arduino Uno, the equivalent of

1 #define stepPin 8

2 void setup()

3 {

4 Serial.begin (9600);

5 pinMode(stepPin , OUTPUT);

6

7 for (int i = 0; i < 1000; ++i)

8 {

9 digitalWrite(stepPin , HIGH);

10 digitalWrite(stepPin , LOW);

11 }

12

13 }

14 void loop() {}

using direct port manipulation would be :

1 #define stepPin 8

2 void setup()

3 {

4 Serial.begin (9600);

5 pinMode(stepPin , OUTPUT);

6

7 for (int i = 0; i < 1000; ++i)

8 {

9 PORTB = B00000001;

10 PORTB = B00000000;

11 }

12

13 }

14 void loop() {}

The syntax works as follow : we simultaneously attribute a value to all the pins of a given port. The port is
designated by its letter. Here we write PORTB= to manipulate the pins on port B and it would have been PORTC= or
PORTD= to manipulate the pins on port C or D respectively. On the right hand side we write B followed by eight value
corresponding to the state of the eight pins of the port. Be careful here, B stands for Byte it is not the letter of the
port. Then comes the value we want to attribute to the pins. The pins are organized in the reverse order : the last
bit corresponds to pin 0 and the first one to pin 7. Here we are manipulating pin 8 which is the pin 0 on port B on
a Arduino Uno board. If the corresponding bit is set to 1, this set the current on this pin to HIGH and conversely 0
corresponds to LOW. To set pin 8 to HIGH and then LOW we therefore first attribute the value B00000001 and then
B00000000 to PORTB=. By doing so we also set all the other pins on this port to 0 (LOW). This can be a problem in
case we didn’t want to change the values of the other pins while manipulating pin 8. For more information on precise
direct port manipulation and on how to circumvent this problem, see this excellent tutorial [5].

Using direct port manipulation, the time necessary to change the state of a pin on a Arduino Uno is typically
reduced by one order of magnitude. On the example above the optimized version takes an average of 0.19µs per pin
manipulation instead of 3.4µs when using the digitalWrite() function [5]. This is a drastic improvement.

On the Arduino DUE, the syntax to manipulate the pin directly is more complicated, but the execution time
improvement compared to a standard digitalWrite() is even more important. On a Arduino DUE, there are 5
ports A, B, C, D, E and each of them is 32bits (instead of 8bits on the Arduino UNO). There are several registers on

cb This work is licensed under a CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/

each port that allows to read and write it. Here, the two registers we are interested in are PIO SODR and PIO CODR.
Writing 1’s to PIO SODR sets the corresponding pins to HIGH where as writing 1’s to PIO CODR sets the corresponding
pins to LOW. To alternatively change a pin from HIGH to LOW, the syntax is as follow :

1 #define stepPin 25

2 void setup()

3 {

4 Serial.begin (9600);

5 pinMode(stepPin , OUTPUT);

6

7 for (int i = 0; i < 1000; ++i)

8 {

9 PIOD -> PIO_SODR = 0b00000000000000000000000000000001;

10 PIOD -> PIO_CODR = 0b00000000000000000000000000000001;

11 }

12 }

13 void loop() {}

Here, we are manipulating pin 25 which is the pin 0 on port D (the complete mapping of the different pins can be
found online). We choose the port we want to manipulate by starting the line with PIOX -> where X is the letter of
the port (D in our case). We then write 1’s to the corresponding registers PIO SODR to turn pins HIGH and PIO CODR
to turn pin LOW. The syntax on the right hand side starts by 0b followed by 32 bits corresponding to the 32 pins of
the port organized in the reversed order (here we are manipulating pin 25 which is pin 0 on port D so we are writing
ones on the very last bit of the port).

With the code above one pin manipulation takes 0.05µs compared to 2.24µs with a digitalWrite(). This is
about fifty times faster !! With this kind of pin manipulation all the commands in the core for loop are instantaneous
compared to the minimal waiting time ∆t that can be applied with delayMicroseconds() (3µs) and we can therefore
drive stepper motor for applications where ∆t between steps as low as a few microseconds are needed (it is actually
possible to achieve faster motion by getting rid of the delayMicrosecond() function and applying the delay ∆t
through lower level commands but we’ll stick with that solution for this tutorial).

The final optimized code to drive our stepper motor is as follows :

1 #include <math.h>

2 #define stepPin 25

3 #define dirPin 26

4

5 float T=1.5; // period of the forcing in sec

6 float fForcing =1/T;

7 float omega =2.*PI*fForcing;

8 unsigned int Nppr =800; // number of pulses per full rotation of the motor (this is set using the

switches on the driver)

9 float nbRot =5.; // number of full rotations of the motor before reversing direction of rotation

10 unsigned int N=round(nbRot*Nppr /2); // amplitude of the oscillations (in term of motor steps)

11 int nb_oscillations =10;// number of period during the all run

12 float tNext; //time at the next step

13 float tNow =0; //time now

14 int *deltaT =(int*) malloc (2*N*sizeof(int)); //array to store the waiting time

15

16

17 void setup()

18 {

19 Serial.begin (9600);

20 pinMode (stepPin , OUTPUT); //set the pulse pin as output

21 pinMode (dirPin , OUTPUT); //set the direction pin as output

22

23 // initialisation of the new array

24 for(unsigned long k=1; k<2*N+1; k++)

25 {

26 tNext =(1./ omega)*acos(1.-float(k)/N)*pow (10,6);

27 deltaT[k-1]= int(round(tNext -tNow));

28 tNow=tNext;

29 }

30

31 delay (150);

32 }

33

34

35 void loop()

36 {

cb This work is licensed under a CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/

37 for(int i=0; i<nb_oscillations; i++)

38 {

39

40 PIOD -> PIO_CODR = 0b00000000000000000000000000000010;//set the Dir pin to low

41 for(unsigned long k=1; k<2*N+1; k++)

42 {

43 delayMicroseconds(deltaT[k-1] -3); // we apply the delay by simply reading the corresponding

value in the array

44 PIOD -> PIO_SODR = 0b00000000000000000000000000000001; //set the step pin to high

45 delayMicroseconds (3); // apply a short delay

46 PIOD -> PIO_CODR = 0b00000000000000000000000000000001;//set the step pin to high

47 }

48

49 PIOD -> PIO_SODR = 0b00000000000000000000000000000010;// reverse the direction of rotation and

repeat

50 for(unsigned long k=1; k<2*N+1; k++)

51 {

52 delayMicroseconds(deltaT[k-1] -3);

53 PIOD -> PIO_SODR = 0b00000000000000000000000000000001;

54 delayMicroseconds (3);

55 PIOD -> PIO_CODR = 0b00000000000000000000000000000001;

56 }

57 }

58 free(deltaT); //free up the allocated memory

59 exit (0); // breaks the execution

60 }

VI. CODE VALIDATION

Now that we have optimized our code, it’s time to give it a try in real life in order to check the actual motion of the
stepper motor. For this purpose, we are going to track the angular position of the shaft of the motor with a camera.
A small piece of tape is attached around the shaft of the motor in order to make the tracking of the angular position
easier. The motor is then attached to a bench in front of a high speed camera, and it is driven through oscillatory
motion using the code and the setup presented above. The evolution of the angular position of the shaft in the course
of time is recorded with the camera (50fps). The obtained movie is then analyzed with an in house Python code
(based on the scikit image library [6]) in order to extract the angular position θ(t) of the shaft on each frame. On Fig.
3, the obtained curve for θ(t) (blue symbols) is compared to the sinusoid (black line) sent as input with the code that
drives the motor. As can be seen the motion of the actual angular position of the shaft follows exactly the theoretical
sinusoid. Here, we show the result obtained for a sinusoid with an amplitude of N = 2000 steps (i.e 8000 steps per
period) and a period T = 3.0s but we have tried different periods including some as low as T = 0.8s for the same
amplitude and obtained perfect agreement between the input function and the final output motion. In fact with our
setup we reach the physical limits of the motor (i.e when the motor can no longer provide the required torque at the
desired speed) before reaching the electronical limits but as explained earlier, the code presented above is technically
able to drive a stepper with ∆t values as low as a few µs (let’s say ≈ 10µs to see large).

Appendix A: Common variables in Arduino

Here is a description of the most common variables available in Arduino (more information can be found in the
references on the Arduino website)

• byte : unsigned integer from 0 to 255 (8 bits)

• int : integer from -32768 to 32767 (16 bits) [on fancy Arduino boards : can be coded on 32bits instead of 16
which extends the range of value]

• unsigned int : integer from 0 to 65535 (16 bits)

• long : integer from -2 147 483 648 to 2 147 483 647 (32 bits) [when doing maths with integers, at least one of
the values must be forced as a long using the letter L e.g : 3232L]

• unsigned long : integer from 0 to 4 294 967 295 [when doing maths with integers, at least one of the values must
be forced as a long using the letters UL e.g : 3232UL]

cb This work is licensed under a CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/

Figure 3. Comparison between the input function sent to the motor and the actual motion of the shaft Left : evolution
of the non-dimensional angular position of the shaft over 9 periods. Right : same over 1 period only. The recorded position of the shaft
(blue symbols) is almost identical to the input function (black line) sent to the motor.

• float and double : floating point number between -3.4028235E+38 and 3.4028235E+38 [float and double are
exactly equivalent on standard Arduino boards like the Arduino Uno]

[1] “DroneBot Workshop,” https://dronebotworkshop.com/ (2021), [Online; accessed 21-July-2021].
[2] “Arduino,” https://www.arduino.cc/ (2021), [Online; accessed 21-July-2021].
[3] “Arduino digitalWrite(),” https://www.arduino.cc/reference/en/language/functions/digital-io/digitalwrite/

(2021), [Online; accessed 21-July-2021].
[4] “Arduino millis() and micros(),” https://roboticsbackend.com/arduino-millis-vs-micros/ (2021), [Online; accessed

21-July-2021].
[5] “Optimize digitalWrite(),” https://roboticsbackend.com/arduino-fast-digitalwrite/ (2021), [Online; accessed 21-

July-2021].
[6] “Scikit image library,” https://scikit-image.org/ (2021), [Online; accessed 21-July-2021].

cb This work is licensed under a CC BY 4.0 license.

https://dronebotworkshop.com/
https://www.arduino.cc/
https://www.arduino.cc/reference/en/language/functions/digital-io/digitalwrite/
https://roboticsbackend.com/arduino-millis-vs-micros/
https://roboticsbackend.com/arduino-fast-digitalwrite/
https://scikit-image.org/
https://creativecommons.org/licenses/by/4.0/

	Driving a stepper motor with Arduino
	Abstract
	Introduction
	Hardware and components
	Stepper motor
	Microstep driver
	Power supply
	Arduino board

	Software and code
	Driving a stepper motor : basics
	Pulse and direction
	Control of the time interval between two pulses
	Basic Arduino implementation
	Measuring execution time with Arduino

	Arduino script optimisation : increasing speed
	Computing the waiting time values beforehand : a memory problem
	Manipulating Arduino pins at a lower level : fast digitalWrite()

	Code validation
	Common variables in Arduino
	References

