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Coupling of vibro-acoustic waves with premixed flame

Basile Radisson, Juliette Piketty-Moine, and Christophe Almarcha
Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, 13384 Marseille, France

® (Received 14 December 2018; published 24 December 2019)

We investigate the coupling between a premixed flame freely propagating inside a
Hele-Shaw burner and the mechanical vibrations of the burner structure. The combustion
chamber deformations are not only able to damp the classical thermo-acoustic instabilities
but they can also trigger a new oscillating combustion instability. We demonstrate that the
flow oscillations induced by the burner vibrations can be used to control the shape of the
flame surface, by damping the Darrieus-Landau dynamics, or by triggering Faraday-like
waves.
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I. INTRODUCTION

Thermo-acoustic instabilities are acoustic oscillations that arise when a flame is coupled to an
acoustic mode of a combustion chamber. They are highly debated in the combustion community
because of the dramatic consequences they can have on industrial burners [1], rocket engines [2],
or ramjet engines [3] to name a few. In order to control these instabilities, it is of prime importance
to understand the diverse phenomena at play [4-6] which participate to the necessary condition
summed up in the Rayleigh [7] criterion: pressure and heat release variations have to be in phase
for the acoustic instability to develop. For propagating flames, a canonical experiment was designed
in vertical tubes [8] and highlights, namely, the first and secondary thermo-acoustic instabilities,
that have an influence on the flame topology in addition to the emission of acoustic waves. During
the primary instability, an increasing acoustic field flattens Darrieus-Landau self-wrinkled flames by
parametric restabilization. During the secondary instability, the more intense acoustic field generates
new small-scale wrinkles through a Faraday-like mechanism: the parametric resonance. In both
cases, the fundamental acoustic mode of the tube is the most likely excited (i.e., with a wavelength
four times larger than the tube length). The interaction mechanism between acoustic waves and
flame dynamics originally proposed by Markstein [9,10] has been analytically [11,12], numerically
[13,14], and experimentally [15-17] studied. A main outcome is that acoustic instabilities are
more likely to emerge when the Markstein number is low [8] (e.g., rich propane-air flame [18]).
Controlling the primary instability in tubes, by using an acoustic source (loudspeaker) or an
acoustic damper (submillimeter aperture) at the closed end of the tube, allowed one to study the
Darrieus-Landau intrinsic wrinkling [19,20] in the linear [21] and nonlinear [22] regimes.

More recently, accurate studies of the Darrieus-Landau wrinkling have been performed in an
experimental device which allows one to reduce the flame dynamics to a quasibidimensionnal
one [18,23-29]. The two-dimensional dynamics has been shown to be similar to that of freely
propagating flames [18]. In particular, the front corrugations undergo a complex motion causing
permanent fluctuations of the total flame area. Due to the induced fluctuating heat release, one
would expect the emergence of acoustic instabilities involving the acoustic modes of the burner
in the same way as it does with the tubes. Surprisingly, acoustic instabilities were reported in the
experiments solely when the gap was large enough (more than 7 mm), or for glass plates sufficiently
thick (19 mm) [16,30,31]. For smaller gap or smaller thickness of the glass plates, no oscillating
instability was obtained, one possible reason being that viscous losses and acoustic loss at walls are
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FIG. 1. Left: Hele-Shaw burner consisting of two plates (one is a 19-mm-thick glass plate) separated by
a 5-mm gap. Accelerometer probes can be placed on the plates and electret microphones are inserted in the
cell side. A shaker can force the plates in Secs. IV and V. Center: Evolution of the pressure fluctuations
during propane-air flame (equivalence ratio 1.2) propagation when the second plate is a PMMA plate of 8§ mm
thickness. Right: associated periodogram exhibiting an 11 Hz frequency.
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too large to allow pressure fluctuations to excite the acoustic mode of the burner [32]. However,
in most of the Hele-Shaw burners, some transient pseudoperiodic oscillations of the flame speed
have been observed just after the ignition of the flame (see Fig. 3 of Alexeev et al. [27], Fig. 3 of
Jang et al. [26], or Supplemental Material Fig. S2 of Al Sarraf et al. [18]). As remarked by Alexeev
et al. [27], these oscillations are not corresponding to the fundamental acoustic mode that is usually
observed in tubes, indicating that the coupling with the burner seems to be different.

In the present Rapid Communication, we investigate the emergence of velocity and pressure
oscillations in Hele-Shaw burners. This phenomenon is acting on the wrinkling of flames and in
this way changes their whole dynamics. We demonstrate that the thermo-acoustic instability usually
observed in tubes is limited and also that it can be overcome by another new oscillating instability
that emerges from a coupling with the structural modes of the burner walls. In Sec. II we introduce
the apparatus used to tackle this problem. In Sec. III, we report the diverse oscillating instabilities
appearing in diverse configurations of the Hele-Shaw cell. In Sec. IV, the structural modes of the
burner are studied both analytically and experimentally, and it is shown that these are the modes
excited during the flame propagation. In Sec. V we show that the flame dynamics can be controlled
by forcing structural modes.

II. EXPERIMENTAL APPARATUS

The Hele-Shaw burner studied here is composed of two plates: one 19-mm-thick glass plate, and
another plate chosen in a set of plates made of either glass or Polymethyl-methacrylate (PMMA),
with thickness between 5 and 19 mm. The two plates are 500 mm wide and 1500 mm high, separated
by a 5-mm gap. By taking a different thickness or material for each plate, we expect to reduce the
coupling between the plates, and keep the thicker one static to simplify the analysis. The Hele-Shaw
burner is oriented vertically, closed at the bottom and on the two sides, and open at the top (see
Fig. 1). A mechanical forcing method is used in Secs. IV and V to study the structural modes of
the burner by positioning an electrodynamic vibration exciter on one plate. Several accelerometers
are positionned on the plates in order to measure their vibrating response. In addition, electret
microphones are inserted in the cell sides at heights 0, 30, 60, 90, and 120 cm to measure pressure
fluctuations. The gas mixture is initially injected from the bottom of the burner by using Bronkhorst
EL-Flow series mass-flow regulators. The flow of reactive gas is then stopped and the flame is
ignited at the top and starts its downward propagation.
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TABLE 1. Frequencies of the self-induced oscillations appearing in a Hele-Shaw cell with a 19-mm glass
plate on one side and one with characteristics reported on the first line on the other side.

Second plate characteristics 5 mm PMMA 8 mm PMMA 5 mm glass 10 mm glass 19 mm glass
Main oscillation frequencies (Hz) 8 11 63-115 105 50
Range of unstable equivalence ratio (¢p)  0.9-1.4 0.9-1.5 1.3-14 12-14 1.2-1.4

III. SELF-INDUCED VIBRO-ACOUSTIC OSCILLATIONS

We analyze the downward propagation of propane-air flames with equivalence ratios in the range
0.7-1.5 with each plates set. In this range, the flame can propagate inside the Hele-Shaw cell of
a 5-mm gap without thermal extinction due to heat loss on the walls [18]. Acoustic instability
usually appears during propagation in tubes [8]. At the expected frequency, the burner height £
corresponds to the quarter of the acoustic wavelength. The corresponding frequency in our apparatus
would be c/4L ~ 50 Hz. With PMMA plates, such a frequency is not observed, but some low-
frequency oscillations appear instead. A typical pressure signal recorded during the propagation
of a stoichiometric flame is reported in Fig. 1. The periodogram of this signal is also drawn and
indicates the emergence of oscillations around 11 Hz, which is too low to be associated with pure
acoustic waves. When two 19-mm glass plates are used instead, some acoustic oscillations around
50 Hz appear for equivalence ratios 1.4 and 1.5. In order to figure out which of the acoustic(-like)
instability frequencies is likely to appear, we report in Table I the measured frequency for each set of
plates. The oscillation frequency is increasing when using glass plates instead of PMMA plates, and
when increasing the plate thickness, until classical acoustic instability emerges when both plates are
of glass and are 19-mm thick. These observations provide the evidence that a coupling between the
flame propagation and the structure of the burner is at play.

In order to have a better understanding of the oscillations appearing in the cell we focus on the
5-mm glass plate configuration. The burner is prepared with two accelerometers on the thin plate to
measure plate vibrations in addition to a microphone at the bottom of the cell to measure the pressure
fluctuations. One accelerometer is positioned at the top of the plate (x = 250 mm, y = 0 mm) and
the other one at (x = 250 mm, y = 800 mm). In order to trigger self-induced oscillations, the burner
is then filled with a rich (¢ = 1.4) propane-air mixture. The signals measured by the microphone
and the two accelerometers during flame propagation are reported in Fig. 1 and exhibit strong
oscillations when the flame reaches the second part of the burner. The dominant mode of these
oscillations is clearly visible at f = 63 Hz [Fig. 2(c)]. Moreover the two accelerometers are in
phase opposition. These observations give us indications on the deformations of the burner, studied
in Sec. IV.

IV. PLATE VIBRATION STUDY

In order to understand the frequencies of the instability observed in Table I, we now use the
electrodynamic shaker and we plot in Fig. 3 the response of the burner deformation to a vibration
excitation when a 5-mm glass plate is used. As can be seen, in the range 30—-180 Hz, the oscillation
amplitude of the 19-mm-thick plate is always at least one order of magnitude smaller than that of the
thin plate, so that the response of the structure can be reduced to the thinner plate one. We identify
in this way the resonant frequencies of the thin plate, including the previous self-induced 63 Hz
oscillations. This frequency can be approximated theoretically as presented hereafter.

Following the Kirchhoff plate theory, the free vibrations of an isotropic plate are governed by the
biharmonic wave equation [33]:

D _,
wy + —Viw =0, (D
ph
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FIG. 2. Plate vibrations induced by a propane-air flame (¢ = 1.4) propagating downward with the 5-mm
glass plate configuration. The strong oscillations that emerge when the flame is in the bottom part of the burner
are recorded by two accelerometers at two different positions. (a) Signal recorded by the microphone at the
bottom of the cell. (b) Detail in the black rectangle. The signals recorded by the two accelerometers are in
phase opposition. (c) Fourier transform of the signal recorded by the upper accelerometer. The dominant mode
emerges at f = 63 Hz.

where w(x, y, t) is the transverse displacement of the plate of material density o, Young modulus E,
and Poisson’s ratio v. & is the thickness of the plate and D = Eh®/[12(1 — v?)] its bending stiffness.
This equation cannot be solved analytically in a general case. However, providing the appropriate
boundary conditions the resonant modes of the plate can be approximated using the Rayleigh
method [34]. The plate modes for the transverse displacement w(x, y, ) = W (x, y) exp(iwt) are
considered as the product of two beam modes W (x, y) = X (x)Y (y). In the present apparatus the
plate is considered as simply supported on the bottom side and on the two vertical sides and free on
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FIG. 3. Left: Vibrating accelerations measured on the two plates. The first four resonant frequencies of

the thin plate are highlighted by red arrows. Comparison of the theoretical plate mode shapes and frequencies
(right) with the experimentally measured ones along the vertical with accelerometers (center).
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the top side, leading to the following boundary conditions:

Xx=0)=Xx=a)=Y@y=0b)=0,

92X 02X 0%y
=l Tl =Y 2)
0x* |, 0x* |, ay* lyzp
A Pr| 0 3
ayz y=0 ay3 y=0 .

This leads to one linear system for each direction x and y whose eigenvalues (respectively,
eigenvectors) correspond to the resonant wave numbers (respectively, resonant mode shapes) of
the plate in the corresponding direction. The resulting vibration amplitude writes as

W(x,y) = (% sin[az(y — b)] + sinhfa(y — b)]) sin (a1x), )

where oy = mz /a is the wave number of the mth resonant mode in the x direction and a,(n) is the
wave number of the nth mode in the y direction. o, (n) is the solution of tan(c«,b) = tanh(wpb) which
cannot be solved analytically but is well approximated by «,(n) ~ (4n + 1)m /4b. The approximate
pulsation of the resonant mode (m, n) is then given by

2 2
w(m, n) ~ m* <ﬂ> + (n + 1/4) 2 (5
a b ph

The first four resonant frequencies given by Eq. (5) for the 5-mm-thick glass plate (E = 69 GPa,
p=2500kgm™>, v=0.25) are f(m=1,n=1)~58 Hz, f(m=1,n=2)~77 Hz, f(m =
1,n=3)~ 107 Hz, f(m = 1,n = 4) ~ 148 Hz, which are in good agreement with the previously
experimentally measured resonant frequencies (see Fig. 1). To ensure that these resonant modes
correspond to the measures, the shape of the latter is analyzed by measuring the local acceleration
A(x,y) along the x and y directions for these four resonant frequencies. The measured relative
amplitude G = A(y)/ max[A(y)] is then compared to the mode shape given by Eq. (4) (Fig. 1). As
predicted analytically, the measured mode in the x direction is m = 1 for these first four resonant
frequencies, whereas in the y direction we get n = 1 for f =63 Hz, n =2 for f =86 Hz,n =3
for f =116 Hz, and n =4 for f = 156 Hz (see comparison in Fig. 3). This ensures that the
structural modes identified in Fig. 1(b) correspond actually to the eigenmodes of the thinner plate.
The slight differences between theoretical and experimental frequencies arise from the connection
of the plates to the frame. An increase in the tightening of the plates results in a slight increase of the
experimental frequency. A similar analysis has been performed with the 8-mm PMMA plate, and a
similar result was obtained, but the first excited mode that emerged was the mode (m = 1,n = 0)
with 11 Hz frequency. In the next section, these plate modes are used to generate flow oscillations
in the combustion chamber and modify the flame dynamics.

V. USE OF VIBRO-ACOUSTIC COUPLING FOR FLAME CONTROL

To observe the influence of the plate vibrations on the flame dynamics, we analyze the flame
propagation when an eigenmode of the structure is excited. To this end, the shaker frequency is
adjusted to one of the eigenfrequencies previously measured. The combustion chamber is filled
with a mixture of propane-air at equivalence ratio ¢ = 0.8. We chose this equivalence ratio in order
to be out of the range of self-excitation reported in Table I. The flame dynamics is recorded between
to and ¢ using two high-speed cameras, and the flame front coordinates are extracted with subpixel
accuracy. From the front coordinates, the mean flame front position at each instant is then computed
as Ymean(t) = 1/a foa y(x, t)dx. Its time derivative corresponds to the oscillating component of the
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FIG. 4. Flow speed oscillations experienced by the flame when the plate is forced for the first and
third resonant frequencies and corresponding front wrinkling that undergoes periodic restabilization and
destabilization during its propagation. The restabilization (respectively, destabilization) zone corresponds to
the antinodes (respectively, nodes) of the plate modes.

flame velocity:

d[Ymean(?)] _ ymean(tf) — Ymean (o)
dt tr—1lo '

Va(1) = (6)
As the flame front is advected by the flow, v, corresponds to the flow oscillations induced by
the plate vibrations. Such flow oscillations are then reconstructed along the y axis, as is shown in
Fig 4 for the first and third plate eigenfrequencies. We observe that the envelope of the oscillations
is in agreement with the plate modes. The temporal analysis shows that flow oscillations are in
phase with the pressure oscillations measured with electret microphones, and in quadrature with the
acceleration of the plates. This is in agreement with a flow induced by the volume variations inside
the Hele-Shaw gap: the flow is in phase with the velocity of the plate vibrations.

We can now investigate the influence that these flow oscillations have on the flame shape [11].
As shown by Searby and Rochwerger [8], under periodic flow oscillations, each mode amplitude
®(k, 7) of the flame shape is well described by

d*® 2 a% 2 0,0)|® =0 7

77 + c? + [a)o +a cos(a)at)] =0, @)
where @, stands for the nondimensional pulsation of flow velocity fluctuations, and ¢, wy, and
a; (proportional to v,) are coefficients depending on the nondimensional wave number of the
perturbation and on the properties of the combustion reaction. Expression (7) is a damped parametric
oscillator equation of eigenpulsation wy and damping coefficient c. As a consequence, a flame front
exposed to periodic flow velocity oscillations is prone to exhibit both parametric restabilization
(leading to a flattening of the wrinkles) and parametric resonance (leading to small-scale wrinkling)
[8,16,17,35]. The effect of the variable amplitude of the forcing v, along the cell is analyzed
by looking at the flame appearance during its propagation (see Fig. 4). For all studied forcing
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FIG. 5. Flame propagation speed in the cell when forcing at 156 Hz. The velocity increases in the zones
where Darrieus-Landau wrinkling is at play and decreases where the wrinkles are flattened by the parametric
restabilization.

frequencies the flame starts its propagation as a flat flame and experiences at some locations
the Darrieus-Landau wrinkling, exhibiting the cellular pattern dynamics described in Ref. [28].
But during its propagation, the front undergoes periodic restabilization and destabilization in
areas whose locations depend on the forcing frequency. One can note that along the y axis, the
restabilization zones correspond to the antinode zones for the flow velocity oscillations. Moreover,
the restabilizations are faster in the center, at x = 250 mm, where the plate vibration and the flow
are maximum according to m = 1. Searby and Rochwerger [8], and Bychkov [12] predict two
different wrinkling regimes for flame fronts advected by flow velocity oscillations. For small v,
and sufficient Froude number, a range of unstable wave numbers is delimited by two cutoff wave
numbers: k, (respectively, k.) where gravity (respectively, thermal diffusive) effects are damping the
Darrieus-Landau wrinkling. Increasing the forcing intensity v,, the range of unstable wave numbers
is reduced. Above the threshold v, > v}, the Darrieus-Landau wrinkling zone is completely
suppressed for all wave numbers. A secondary instability zone appears when v, > vj; and is called
parametric instability. The two thresholds v and vj; depend on the physicochemical parameters
associated with the flame. If for some flames vj; > v and in a range of forcing vf < v, < vj the
intrinsically unstable flame undergoes a parametric restabilization. In our experiments, the threshold
vj is reached in the antinodes and the flame remains flat (stable). Then, when the flame propagates
further downwards, the forcing v, decreases until v, < v and the flame is once again undergoing
Darrieus-Landau wrinkling. This phenomenon is repeated each time the flame crosses an antinode
of the modes, which explains the periodic restabilization and destabilization observed in Fig. 4. As
the flame speed is correlated to the flame shape, the flame speed is modulated during the propagation
(Fig. 5). The velocity reaches some maxima when the Darrieus-Landau wrinkling is at play, in the
zone where parametric restabilization is not effective. Contrarily, the velocity decreases when the
flame is flattened by the parametric restabilization. This confirms that the vibrations of the plates
are efficient to induce flow oscillations in the Hele-Shaw combustion chamber and directly act on
the flame flattening and on the flame speed. In addition, when the amplitude of the oscillations is
sufficiently high, it is possible to reach parametric destabilization in a similar way as the secondary
acoustic instability. When looking at f = 116 Hz propagation in Fig. 4, one can notice a small-scale
cellular aspect of the flame, in the last antinode at the bottom of the burner. This small-scale
wrinkling is oscillating with a period twice that of the flow oscillations. This is evidence that it
corresponds to the parametric destabilization which arises when v, > vf}.

VI. CONCLUSION

The present study was motivated by the unexplained flame oscillations observed in recent studies
on flame dynamics in narrow channels [18,26,27]. We demonstrated that these oscillations may be
caused by structural modes of the burner. It has been shown that the plate modes may be excited
by the flame propagation itself and that in turn the plate vibration generates flow speed oscillations
in the burner, which act on the flame dynamics in a similar fashion to the oscillations induced
by thermo-acoustic instability. The important difference here is that the frequency and the mode
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shape of the oscillations are not ruled by the burner internal geometry like for acoustic modes,
but by the structure deformation modes which depends on the material and the whole geometrical
characteristics of the burner (thickness, size, and assembly). When focusing on the topology of the
flame interface, both parametric restabilization and parametric resonance are possible to be forced.
These observations open ways to study the response of flames wrinkling to flow oscillations.
Indeed, the forcing method used in this study is both efficient and easy to set up, and it allows
one to study the flame response to time-dependent stretch [36,37] on a large range of frequencies
(expandable by changing the bending stiffness of the plate). Moreover, the distance between the two
plates can be easily modified giving one the opportunity to study the influence of Saffman-Taylor
effects on the restabilization threshold vf and on the parametric destabilization threshold vjj [32].
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