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Premixed flame propagation is a rich interface problem. Instabilities and nonlinearities
lead to the formation of cusps pointing toward the burnt gas. These cusps, which undergo
complex dynamics, enhance the reaction rate by increasing the flame surface. These
crests can be interpreted as pole solutions of the Michelson–Sivashinsky equation that
evolve according to ordinary differential equations. Thanks to a quasi-bidimensional
experimental facility (a Hele-Shaw burner) we evaluate the accuracy of the description
of flame dynamics by elementary interaction between cusps. In particular, we address
the time for which a direct comparison between experiments and numerical integration
is feasible. The sensitivity to initial conditions and noise is discussed. We demonstrate
that at any time of evolution, interesting features can be recovered by describing the flame
surface evolution as pole dynamics.
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1. Introduction

In their experiments on explosions in coal mines, Mallard & Le Chatelier (1883)
reported for the first time the observation of the cellular nature of premixed flames. Since
this pioneering work, many other experimental studies have confirmed this particular
phenomenon (Smithells & Ingle 1892; Groff 1982; Bradley 1999). In two similar
independent studies Darrieus (1938) and Landau (1944) proposed that the exothermic
character of combustion is responsible for a hydrodynamic instability that leads to this
corrugated pattern. By considering the front as a discontinuity between two inviscid
flows of different densities and by using appropriate Rankine–Hugoniot conditions (see
Landau & Lifshitz (1959), chapter IX § 84), they performed a linear stability analysis and
demonstrated that the front is unconditionally unstable, with a linearly increasing growth
rate with respect to the wavenumber of the perturbation. By introducing a flame curvature
dependence of the local flame speed, Markstein (1951) managed to take flame thickness
effects into account and obtained a dispersion relation for flames of finite thickness

σ = 4
σM

kc

(
|k| − k2

kc

)
, (1.1)
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where σ and k are, respectively, the growth rate and the wavenumber of the perturbation,
σM is the growth rate of the most unstable wavelength and kc is a cutoff wavenumber.
By introducing this new formalism and considering the gravity effect, Markstein
reconciled the linear stability theory with experimental observations of downwards planar
propagating flames (Quinard 1984; Searby & Quinard 1990). In particular, he pointed out
that there is a small cutoff wavelength λc = 2π/kc due to thermal diffusion and a large
cutoff wavelength caused by the stabilizing effect of gravity (Taylor 1950; Markstein 1951;
Pelce & Clavin 1982).

By looking at flames propagating in glass tubes, Markstein (1949) also noted that
the flame destabilization quickly leads to cellular patterns with stationary amplitude. As
first identified by Karlovitz, Denniston & Wells (1951) and Manton, von Elbe & Lewis
(1952), this saturation has a nonlinear Huygens geometrical origin. Due to the normal
propagation of the front, the radius of curvature increases (decreases) where the front
is convex (concave) toward the unburned gases, leading to cells separated by abrupt
cusps. Then, as a consequence of the flow induced in the unburned gas, this cellular
pattern exhibits complex dynamics with larger cells growing at the expense of smaller
neighbours in a way similar to bubbles competition in water (Layzer 1955). Numerical
experiments either in the small expansion framework (Michelson & Sivashinsky 1977;
Creta, Fogla & Matalon 2011) or with a fully nonlinear model (Rastigejev & Matalon
2006a; Creta & Matalon 2011; Altantzis et al. 2012) have shown that these dynamics can
lead to a final monocellular solution with characteristic sizes much larger than the most
unstable wavelength λmax = 2λc predicted by the linear theory (Markstein 1949). These
observations highlight the importance of the geometrical nonlinear effects in the long-time
dynamics. Indeed, by forming a unique large cell stabilized by stretch (Uberoi 1959), the
hydrodynamic instability is responsible for a new stable state (Zeldovich et al. 1980; Pelce
& Clavin 1987; Rabaud, Couder & Gerard 1988).

However, as observed in Markstein’s experiments, for flames propagating in large
vessels the merging process of cells is permanently supplied by the appearance of smaller
cells (Michelson & Sivashinsky 1977; Gutman & Sivashinsky 1990; Rahibe et al. 1995;
Rastigejev & Matalon 2006a; Creta et al. 2011; Altantzis et al. 2012; Yu, Bai & Bychkov
2015) created by splitting cells, after they reached an excessive size. This process never
leads to the steady monocellular arrangement observed in smaller experiments (Uberoi
1959; Von Lavante & Strehlow 1983; Pelcé-Savornin, Quinard & Searby 1988). As first
suggested by Joulin (1989), these new crest formations are caused by the background
noise that generates small wrinkles on the front that are in turn magnified by the
Darrieus–Landau instability.

Hence, the dynamics of premixed flames results from the competition between several
intrinsic properties (large-scale hydrodynamic coupling, thermodiffusive phenomena,
geometrical nonlinear effects) and external stochastic forcing (hydrodynamics or thermal
perturbations). Recently, by studying flames propagating in a Hele-Shaw burner, Almarcha
et al. (2018) have shown that a small expansion model (Sivashinsky 1977) provides
a good description of the flame evolution both during the destabilization process
and the long-time evolution. In particular, they demonstrated that the dynamics is
accurately described by the trajectories of poles associated with the analytical solutions
of the Michelson–Sivashinsky (MS) equation, up to a certain time. Beyond this time,
the stochastic influence of the background noise becomes important and the system
can no longer be described as a deterministic process. However, the pole-to-pole
interaction still holds locally and allows us to predict some statistical properties of the
flame front.
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Nonlinear dynamics of premixed flames 903 A17-3

The aim of the present paper is to extend this previous work, in particular to characterize
the typical time under which the flame dynamics remains deterministic, and to assess the
validity of the statistical description at large time by comparing numerical, experimental
and analytical results.

Compared to some of our recent papers, such as Al Sarraf et al. (2018a) and Almarcha
et al. (2018), we have greatly improved the experimental techniques, which will allow
us to study the repeatability of experiments and perform successful comparisons with
theoretical results, both on the short-time nonlinear evolution and on the long-time
statistical properties of the front.

The paper is organized as follows. In § 2 the experimental set-up used for this work
is described, with special consideration given to its benefits and limitations. Then,
early deterministic regimes of destabilization, nonlinear saturation and deterministic pole
interaction are analysed in § 3 by way of the MS model whose relevance with regards to
laboratory experiments is underlined. Finally, under the influence of stochastic external
forcing, the statistical features of the flame topology are described in § 4.

2. Experimental set-up

Most of the experimental studies about intrinsic flame instability and dynamics are
based on anchored inverted V-flames (Truffaut & Searby 1999) or flame propagation in
expanding flame balls (Bradley 1999; Jomaas, Law & Bechtold 2007) or in glass tubes
(Markstein 1949; Quinard 1984; Clanet & Searby 1998; Almarcha, Denet & Quinard
2015). In the first configuration, the angle between the front and the mean flow, implies
the existence of a tangential velocity component. The wrinkles are advected along the
front and the time over which their dynamics can be studied is limited. In the two other
configurations, although long-time dynamics can be observed, the analysis of the front
properties is difficult due to the three-dimensional character of the reaction sheet. In the
present study, in order to avoid these shortcomings, the dynamics of the flame is analysed
in a Hele-Shaw burner. The later was first proposed in the framework of an analytical study
by Joulin & Sivashinsky (1994) and introduced experimentally by Sharif, Abid & Ronney
(1999). The apparatus consists of two vertically oriented borosilicate glass plates, 0.5 m
wide and 1.5 m high, separated by a 5 mm gap, closed on the sides, open at the top and
supplied with a premixed mixture at the bottom. The gap between the plates being of the
order of the cutoff wavelength λc (depending on the equivalence ratio), this burner presents
the major advantage of forcing the flame to be stationary in the thickness direction. Indeed,
after a transient destabilization, the flame quickly moves toward a steady monocellular
shape in the thickness direction. The dynamics is thus constrained in that direction and the
analysis is significantly simplified into a bidimensional evolution. In the following sections
we discuss in detail the choice of the main characteristics of this experimental apparatus.

2.1. Experimental procedure
For each experiment reported in the present study, the same operating procedure is used
for each run. A flow of the combustible mixture, adjusted to the desired equivalence ratio
(ϕ) and dilution (δ = VO2/(VO2 + VN2 )) with less than 1 % error thanks to a PC-interface
connected to Bronkhorst EL-Flow series mass-flow regulators, is maintained from bottom
to top until there is complete homogenization in the burner. A two-dimensional inverted
V-flame is ignited at the top of the burner and remains anchored as the flow rate exceeds
the flame velocity, until the flow is stopped by closing a valve upstream. The flame then
starts its downwards propagation (recorded using a high-speed camera), from an initially
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903 A17-4 B. Radisson, B. Denet and C. Almarcha

FIGURE 1. Spatiotemporal diagram of a propane–air flame (ϕ = 0.8) propagating downwards
in a Hele-Shaw burner. Field of view width is 46 cm. Time between two successive fronts is
14 ms. The front starts flat and is rapidly destabilized due to the Darrieus–Landau effect. Rapidly
the instability is saturated by nonlinearities and a complex dynamics is observed. The crest
merging and crest creations are readily visible.

flat state that quickly leads to a cellular pattern due to hydrodynamic destabilizing effects
(see figure 1).

2.2. Design of the burner

2.2.1. Thickness
The thickness of the burner is of prime importance. On one hand it must be thin enough

to guarantee that the flame has a steady profile in the burner thickness direction. On the
other hand, if the thickness is not large enough, momentum (Saffman & Taylor 1958) and
heat losses at the wall may completely modify the standard Darrieus–Landau picture. By
measuring the flame propagation for stoichiometric propane–air flames in small channels
(Gutkowski & Jarosiński 2009) or in a Hele-Shaw burner (Jang, Jang & Kim 2018), it has
been shown that by decreasing channel width, the flame speed is first slightly increased
up to a channel thickness around 5 mm due to surface incremental increase with curvature
in the thickness. Then for smaller channel widths, as heat losses become dominant, the
flame speed is strongly decreasing with the thickness of the burner until it reaches a
quenching thickness (≈2 mm). For propane–air flames the 5 mm thickness seems to be a
good compromise. This choice was confirmed in the same apparatus by the Al Sarraf et al.
(2018a) growth rate measurements that follow the standard σ ∼ k − k2 (1.1) dispersion
relation for all mixture compositions. The latter result shows that even if the heat and
momentum losses due to the confinement of the flame may modify the coefficients in
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Nonlinear dynamics of premixed flames 903 A17-5

5 mm

15
0 

cm

50 cm

FIGURE 2. Sketch of the experimental apparatus used in this study. The two glass plates are
vertically oriented and separated by a thin gap closed on the sides and at the bottom. The burner
is filled with an homogeneous mixture of propane and air at desired equivalence ratio ϕ and
dilution δ (see § 2.1 for definition). The flame is ignited at the top and propagates downwards.

the dispersion relation, the underlying mechanisms governing the dynamics of the flame
remain the same as for the three-dimensional configuration (Clanet & Searby 1998).

2.2.2. Width
The width of the cell has to be sufficiently large so that the side walls do not impact

the flame behaviour in the middle of the cell. The mean size of the pattern expected in
the late-time dynamics is approximately a few times (Cambray, Joulain & Joulin 1994)
the maximum unstable wavelength (approximately 1 cm here). In order to get a sufficient
number of cells for the late-time regime studied in § 4, we use a burner 10 times larger
than this mean cell size, i.e. 50 cm wide (figure 2).

2.2.3. Height
As the flame propagates from top to bottom, the height of the burner imposes the time

over which the flame propagation can be studied. As we are interested in both the short-
and long-time dynamics, the apparatus should be high enough to guarantee that the flame
reaches a fully developed stage. Due to nonlinear interaction, this time can be significantly
longer than the characteristic time of the instability tσ = 1/σmax (Joulin & Cambray 1992).
Considering a typical tσ ∼ 10−2 s (Al Sarraf et al. 2018a) and a typical flame propagation
speed uT ∼ 1 m s−1, the time for the flame to propagate from top to bottom of the 1.5 m
high burner, is of the order ∼102tσ .
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FIGURE 3. Evolution of the vertical speed of the flow after the valve closure for three different
set-ups. After a delay time (0.7 s) corresponding to the closure time of the solenoid valve, the
deceleration of the flow is observed.

2.2.4. Valve closure system
The short-time destabilization is likely to be altered by the gas deceleration after closing

the valve. The closure system must be carefully designed to avoid undesirable buoyancy
effects including Rayleigh–Taylor instability (Taylor 1950). In order to characterize the
acceleration experienced by the gas after the valve closure, we measure the evolution of
the flow speed by using particle image velocimetry. For this purpose, a continuous 532 nm
laser sheet is placed in the Hele-Shaw burner and the mixture flow is seeded with oil
droplets. We perform repeatable experiments using a solenoid valve (contrary to the Al
Sarraf et al. (2018a) study where the flow was stopped manually). When the valve is closed,
it triggers a high-speed camera that records the flow deceleration. The velocity field is then
obtained by a particle image velocimetry cross-correlation algorithm (Meunier & Leweke
2003). The vertical velocity of the flow is measured at one point at the top of the burner,
a few centimetres inside. A vessel (of volume Vv) can be placed between the valve and
the burner, in order to modify the decay rate of the flow. The evolution of the vertical
velocity is plotted in figure 3 for three different values of Vv. As can be seen, when Vv =
0, the system behaves as an underdamped oscillator (see figure 3 (blue curve)) and the
flame experiences strong acceleration effects (�4g) which are not desirable for an intrinsic
flame dynamics analysis. The underlying mechanism for these oscillations is beyond the
scope of the present paper and was studied in a recent paper (Radisson, Piketty-Moine &
Almarcha 2019). However, to avoid these shortcomings, for all the experiments reported
hereafter, a vessel Vv = 250 cm3 is placed between the valve and the burner. In this way,
the measured deceleration of the flow is approximately half the magnitude of gravity (see
figure 3 (orange curve)), ensuring that Rayleigh–Taylor effects are negligible.

2.3. Flammability limits
The propane–air mixture was varied in order to explore the full range of equivalence
ratios, up to the flammability limits of the apparatus, that allow the propagation of a flame.
For the burner at ambient temperature ≈293 K the flammability limits were found to be
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Nonlinear dynamics of premixed flames 903 A17-7

approximately ϕ ≈ 0.65 on the lean side and ϕ ≈ 1.5 on the rich side. The present work
is limited to a range of equivalence ratios far from these extinction limits (0.8 < ϕ < 1.3).

2.4. Data acquisition
The flame dynamics are analysed by recording flame chemiluminescence images with
a 8-bit high-speed video camera (Photron FASTCAM MINI AX 200) (figure 1). The
flame-front coordinates are then extracted from these images by way of Python image
processing (open-source library Scikit-Image) with subpixel accuracy.

3. Deterministic dynamics

In figure 1, two typical stages are clearly visible. Starting from an initially flat flame,
some wrinkles first emerge and grow to form crests with saturated amplitude. In a second
stage, these crests evolve in a complex motion including crest merging and new crest
creations. In this section, we analyse the linear stage and then compare the evolution of the
front with a nonlinear model and its analytical solutions. We also evaluate the time during
which the trajectories of crests are deterministic.

3.1. Growth rate measurements
The unstable nature of flames is unveiled by the linear destabilization, starting from an
initially flat flame. This is easily obtained in our experiment as the flame is anchored on the
straight upper edge of the cell (figure 4) before it starts entering the cell. In that case, the
most unstable wavelength emerges. However, in order to access the dispersion relation and
the key features exposed on (1.1), it is necessary to start from an initial condition (figure 5)
forced to develop selected wavelengths by using the forcing method introduced in Al Sarraf
et al. (2018a). This procedure allows us to measure the growth rate of distinct wavelengths.
Contrary to the Al Sarraf et al. (2018a) study, the burner supply line is now equipped with a
solenoid valve which allows us to perform experiments in a repeatable way and the forcing
plates are more accurately machined (we use for measuring growth rates a sinusoidal
profile obtained by laser cutting). These improvements of experimental techniques allow
us to present a new extended set of growth rate measurements and particularly to obtain a
more precise value of the cutoff wavenumber. This better confidence on the kc value will
be of particular importance for the results presented in the next sections. The data obtained
from these measurements are shown in figure 6. The theoretical dispersion relation (1.1)
is then fitted with σM, the growth rate of the most unstable wavelength, and kc, the cutoff
wavenumber. As predicted by Sivashinsky (1977), we will show that the overall dynamics
observed in our experiments can be described knowing these two parameter values.

3.2. Saturation
As evidenced by the flame-front evolution in figure 5, the exponential growth is rapidly
saturated by a geometrical effect: the normal propagation of the front. This nonlinear
effect is responsible for the formation of crests that limit the wrinkles’ amplitude.
Therefore, a relevant investigation of the physical mechanisms involved in the long-time
dynamics requires nonlinear analysis with all the basic ingredients highlighted before:
large-scale hydrodynamic instability, thermal restabilization at short wavelength and
nonlinear geometrical effects able to saturate the instability. Carrying these three essential
basic features and possessing the obvious advantage of being analytically tractable,
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Hele-Shaw burner

Forcing plate

Inverted V-flame(b)(a)

FIGURE 4. Sketch of the experimental set-up used to perform growth rate measurements.

FIGURE 5. Unstable mode growth record in the first instants of propagation after stopping the
flow (field of view 158 mm). Propane–air flame ϕ = 0.8. (Fronts have been artificially shifted
to distinguish each time of evolution. Time between each front dt = 7.5 ms.) Here the flame is
initially forced with a 18 mm wavelength. See Al Sarraf et al. (2018a) for details about forcing
methods.

the MS equation (Sivashinsky 1977) seems to be an ideal candidate to allow a detailed
description of the flame dynamics. In the following section, the model and its analytical
solutions are first introduced and their essential properties are recalled. Its relevance
regarding the experiments is then demonstrated.

3.3. An asymptotic model: the MS equation
Considering an infinitesimal thickness flame separating two inviscid flows of different
densities and a kinematic relation with a linear dependence on flame-front curvature for
the local flame speed, Sivashinsky (1977) showed that it is possible to obtain an evolution
equation for the flame front. By performing an asymptotic development of the full set
of equations in the limit of small expansion parameter γ → 0 (γ = (ρu − ρb)/ρu), the
flame-front dynamics is reduced to a pseudodifferential equation governing the motion of
the front. At first order in γ it takes the form

φt + uA

2
φ2

x = 4σM

kc

(
φxx

kc
+ I(φ, x)

)
, (3.1)
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FIGURE 6. Growth rate measurements (downwards propagating propane–air flame ϕ = 0.8)
obtained from flame dynamics analysis in the first instants of propagation. The experimental
points are then fitted with the theoretical dispersion relation in order to determine the relevant
σM and kc parameters for our experiments.

where φ stands for the vertical position of the front, x is the transverse coordinate and
t the time. Here, σM and uA are parameters depending on the laminar flame speed and
the expansion parameter γ . Here, kc is the cutoff wavenumber depending on the reactive
mixture properties and I(φ, x) is a linear operator given by

I(φ, x) =
∫ ∞

−∞
|k| eikx φ̂(k, t) dk. (3.2)

As can be seen in (3.1), from the first order in γ , the Sivashinsky model contains the
three essential basic ingredients listed before. Moreover, it was shown later that despite
new terms correcting the mean front displacement, this equation keeps almost the same
functional structure up to second order (Sivashinsky & Clavin 1987; Joulin & Cambray
1992) and third order in γ (Kazakov 2005a,b) (stationary case). In (3.1), the last term is
the instability term. Due to multiplication by |k| in Fourier space, the I(φ, x) is responsible
for the amplification of any disturbance with a linearly increasing growth rate with k the
wavenumber of the perturbation. The curvature term φxx comes from the thermal diffusive
restabilization and is responsible for the damping of disturbances at small scale. Finally,
the φ2

x is a slope advection term and is responsible for the formation of cusps due to
normal propagation of the front. In a way similar to the dynamics described by the Burgers
equation, the cusps are regularized by the diffusive term in the right-hand side. These
dynamics never lead to real slope singularity but to the formation of abrupt crests with
rounded tips as can be seen in late stages of figure 5. As first shown by Bessis & Fournier
(1984), these quasi-cusps can be expressed in term of complex singularities appearing in
complex-conjugate pairs. Accordingly, the MS model admits analytical solutions which
allow us to express the evolution of the flame front in terms of the trajectories of these
complex singularities.
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FIGURE 7. Evolution of arbitrary set of poles according to (3.4) and their corresponding
solutions for the flame front (the time goes from the light initial condition to the dark final
one). (a) Merging of two crests due to pole attraction along the real axis. (b) New crest creation
due to attraction of a pole initially far from the real axis.

3.4. Analytical pole solutions for the Sivashinsky equation
As first noted by Thual, Frisch & Hénon (1985), the MS model belongs to a broader class
of nonlinear models (Lee & Chen 1982) which admit analytical solutions in the form of
complex pole decomposition: the solutions of (3.1) (with periodic boundary conditions)
can be expressed as

φ(x, t) = − 8σM

uAk2
c

2N∑
n=1

ln
(

sin
(

π (x − zn(t))
Λ

))
, (3.3)

where Λ is the width of the domain, N is the number of complex conjugate pole pairs
involved in the solution and zn are the positions of the poles in the complex plane. Roughly
speaking, each pair of poles is responsible for a distortion of the front around the abscissa
x = Re(zn). The distortion is even more pronounced as Im(zn) is small (φx → ±∞ when
Im(zn) → 0).

Substituting (3.3) in (3.1), the problem of the front dynamics is reduced to a dynamical
system of 2N ordinary differential equations, that govern the poles trajectories in the
complex plane,

żn = 4σM

kc

[
2π

Λkc

∑
p /= n

cot
( π

Λ

(
zp − zn

)) − i sign (Im(zn))

]
, (3.4)

where the first term in brackets is responsible for an attractive interaction between poles
along the real axis, and a repulsive one along the imaginary axis. As each crest is the
manifestation of at least one pair of poles in the complex plane, this horizontal attraction
between poles is responsible for the crest merging observed in our experiments (see
figure 1). Due to vertical repulsion, when two pairs of poles tend toward the same abscissa,
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*
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FIGURE 8. Interaction between two pairs of poles, sufficiently close to each other so that we
can ignore interaction with other poles, but sufficiently far to have h � d in order to consider a
two-body interaction with a double charge (see (3.5)).

each of them follows an hyperbolic trajectory (Thual et al. 1985) in the complex plane and
poles tend to align vertically forming giant crests (see the left part of figure 7). This pole
dynamics leads to a steady giant cusp solution (the monocellular arrangement previously
quoted) with all the poles aligned along the imaginary axis (Thual et al. 1985). This
process is similar to the pole condensation in the Burgers equation and may be viewed
as the mechanism leading to shock coalescence (see Bessis & Fournier 1984). In order to
test the MS model and the accuracy of the pole solutions, we analyse the dynamics of a
two cusps merging.

3.5. Crest merging
As in Almarcha et al. (2018), we are interested in the mechanism of cell fusion. We first
present a formal derivation of the analytic law for cusp aggregation.

We consider two pairs of complex conjugate poles z(∗)

1 = x1 ± iy1 and z(∗)

2 = x2 ± iy2
sufficiently close to each other so that we can ignore their interaction with other poles (see
figure 8). According to (3.4) and giving C1 = 4σM/kc and C2 = 2π/Λkc, we have

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = C1

{
C2

[
cot

( π

Λ
(d + ih)

)
+ cot

( π

Λ
(d − il)

)
+ cot

(
−2i

π

Λ
y1

)]
− i

}
,

ż2 = C1

{
C2

[
cot

(
− π

Λ
(d + ih)

)
+ cot

(
− π

Λ
(d + il)

)
+ cot

(
−2i

π

Λ
y2

)]
− i

}
,

ż∗
1 = C1

{
C2

[
cot

( π

Λ
(d + il)

)
+ cot

( π

Λ
(d − ih)

)
+ cot

(
2i

π

Λ
y1

)]
+ i

}
,

ż∗
2 = C1

{
C2

[
cot

(
− π

Λ
(d − il)

)
+ cot

(
− π

Λ
(d − ih)

)
+ cot

(
2i

π

Λ
y2

)]
+ i

}
,

(3.5)
with

d = x2 − x1,

h = y2 − y1,

l = y2 + y1,

⎫⎪⎬
⎪⎭ (3.6)

so that

⇒ ḋ = −C1C2

{
cot

( π

Λ
(d + ih)

)
+ cot

( π

Λ
(d − ih)

)
+ cot

( π

Λ
(d − il)

)
+ cot

( π

Λ
(d + il)

)}
. (3.7)
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In the limit where poles are sufficiently close to each other so that we can ignore interaction
with other poles, and where the two poles are near their equilibrium position along
the imaginary axis (i.e. attraction due to second term in the right-hand side of (3.4) in
equilibrium with the repulsive force due to interaction with their c.c ⇒ h � Λ/π and
l � Λ/π)

⇒ ḋ = − 2ΛC1C2

πd
(

1 + (
h
d

)2
) − 2ΛC1C2

πd
(

1 + (
l
d

)2
) , (3.8)

which yields, at leading order when h/d → 0 and l/d → 0, to

⇒ d2(t) = d2
0 − 8C1C2Λ

π
t = d2

0 − 64σM

k2
c

t. (3.9)

The latter is equivalent to the interaction between two poles on the real axis, each of
them having a double charge.

As each pole z is responsible for the presence of a crest at x = Re(z), the squared
distance between two crests is a linearly decreasing function of t with a slope d2

t =
−64σM/k2

c . This theoretical law, already introduced by Almarcha et al. (2018) is now
checked experimentally and numerically.

For this purpose, the pole dynamics ordinary differential equation (3.4) is integrated
from an initial condition with two isolated poles with equal imaginary parts (Im(z1) =
Im(z2)) (figure 9b). The evolution of the horizontal distance between the two poles (d(t) =
Re(z2) − Re(z1)) is computed. On the other hand, an experimental merging of two isolated
crests is analysed in the Hele-Shaw burner (figure 9a), and the evolution of the distance
between them d(t) = √

(xr − xl)2 + ( yr − yl)2 is computed. These two evolutions are then
compared with the asymptotic law (3.9) using σM and kc values obtained in § 3.1 (see right
part of figure 9). As can be seen, the experiment not only corroborates the functional form
of (3.9) but also the value of the slope, which was not obtained in Almarcha et al. (2018),
due to a low precision on the cutoff wavenumber. This good agreement underlines the
relevance of pole description for real flames.

3.6. Crest creation
In viscous Burgers dynamics, shocks are relaxed by pole repulsion to ±i∞. In MS
dynamics, instead, the second term in brackets in (3.4), is responsible for an attraction
of poles toward the real axis. Due to this instability term, poles that are initially far
from the real axis (therefore not visible on the front solution) may drift toward the real
axis. This mechanism can be responsible for the appearance of new crests (see the right
part of figure 7). However, in our experiments we observe permanent new crest creation
during the flame propagation (see figure 1), which could be seen as the presence of an
infinite (N → ∞) reservoir of poles initially far from the real axis. On the other hand
if N is finite, the pole dynamics cannot describe the experimental observations for large
times. The problem of new crest creations is therefore of fundamental importance to settle
whether our experiments can be described by a purely deterministic model such (3.4).
To make the discussion about new crest creations simpler (and simplify the comparison
between the numerical experiments in § 4.1.1 and the other ones from the literature), we
introduce the non-dimensional MS equation. Introducing Λ = 2π/K the width of the
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FIGURE 9. Merging process between two isolated crests of a propane–air flame (ϕ = 0.8).
(a) Successive fronts extracted from an experimental movie during the merging process. Time
between two successive fronts dt = 2 ms. (b) Flame-front evolution given by pole dynamics
starting from two isolated pairs of poles. Time between two successive fronts dt = 2 ms.
(c) Evolution of the squared non-dimensional distance between the two crests in the course of
time. The evolution observed on experimental flame (black circles) is compared with the one
given by pole dynamics given by (3.4) (red squares) and to the theoretical law (3.9) (dashed
line). Here, the σM and kc values are those obtained in § 3.1.

domain considered and setting the following appropriate non-dimensional variables

τ = 8πσM

Λkc
t,

X = 2π

Λ
x,

Φ = uAkcπ

2ΛσM
φ.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.10)

Equation (3.1) is reduced to a one parameter equation

Φτ + 1
2Φ

2
X = νΦXX + I (Φ, X) , (3.11)

where the control parameter 1/ν = kc/K corresponds to the ratio of the width
of the domain to the shortest unstable wavelength. Commonly called the unstable
modes number, this parameter stands for the only non-dimensional number governing
the flame dynamics. Indeed, both experimental studies (Markstein 1949; Istratov &
Librovich 1969; Groff 1982; Gostintsev, Istratov & Shulenin 1989; Jomaas et al.
2007), and numerical experiments, either in the MS framework (Michelson &
Sivashinsky 1982; Thual et al. 1985; Gutman & Sivashinsky 1990; Filyand, Sivashinsky
& Frankel 1994; Joulin & Sivashinsky 1994), or using a fully nonlinear model
(Rastigejev & Matalon 2006a), or direct numerical simulation (Yu et al. 2015), have
reported a strongly dependent dynamics on this 1/ν parameter. For small domains
(large ν), (considering periodic boundary conditions) the dynamics always leads to a
steady single crest configuration (sometimes double crest configuration for Neumann
boundary conditions) whereas for larger domains, as the cells become wider, one can
observe secondary wrinkles permanently appearing on the primary structures. This
behaviour is in contrast with the dynamics described by (3.4), which always leads to a
steady state, whatever the size of the domain (Thual et al. 1985; Joulin & Sivashinsky
1994; Rahibe et al. 1995). The differences observed between the dynamics described by
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903 A17-14 B. Radisson, B. Denet and C. Almarcha

(3.1) and the one described by (3.4) for large domains, is indeed quite surprising. As first
proposed by Joulin (1989), the new crest creations actually depend on the background
noise (numerical noise, flow perturbations). Indeed, as first shown by Thual et al. (1985),
the steady monocoalescent solution is the strongest attractor of (3.4) and any initial
condition tends to this Nopt poles pile solution (Thual–Frisch–Hénon (TFH) solution).
This solution is such that 2Nopt − 1 < 1/ν < 2Nopt + 1 (where Nopt is called the optimal
pole number), extra poles are repealed to infinity. However, even if the TFH solution is
the only stable one for both (3.1) and (3.4) (Vaynblat & Matalon 2000a,b), the number
of equilibrium solutions is growing faster than linearly with 1/ν, leading rapidly to a
large number of solutions (Denet 2006). The external noise, which is responsible for the
permanent addition of new poles (Joulin 1988; Kupervasser, Olami & Procaccia 1996;
Olami et al. 1997), may cause the system to permanently jump from one solution to
another if poles are introduced close enough to the real axis (Denet 2006). Moreover, this
unsteady behaviour can be explained without invoking nonlinear mechanisms, because of
the existence of transient growth phenomena (Karlin 2002, 2004) not taken into account
in the modal analysis carried out by Vaynblat & Matalon (2000a) and making the TFH
solution an unstable equilibrium for (3.1). To be physically relevant for large-scale flames,
it is thus necessary to add a stochastic forcing term in (3.1) to mimic the noise experienced
by the flame front (Cambray & Joulin 1992; Cambray et al. 1994; Creta et al. 2011).
From the pole decomposition standpoint, as said before, the external perturbations act
as a stochastic source of new poles (Joulin 1988; Kupervasser et al. 1996; Olami et al.
1997). But until now the new poles are introduced in a completely artificial manner, and
how to determine the probability function of adding a new pole at a certain location in
the complex plane remains an open question. Despite this effect, in the following section
we will show that the flame propagation observed in our experiments can be treated as a
deterministic process for some time of evolution, and that the dynamics described by (3.4)
is then experimentally relevant.

3.7. Initial forced pole solution
In a recent paper (Almarcha et al. 2018), by being able to fit the (3.3) solution on a front
extracted from experiments with a small number of poles, we have already shown that pole
solutions can be relevant regarding real flames. The present section is another step forward
and comes with the aim of characterizing the repeatability of the experiments in order to
extract a typical time beyond which the flame dynamics can no longer be described as
a purely deterministic pole dynamics. In Al Sarraf et al. (2018a) and in § 3.1 the flame
was initially forced with a sinusoidal profile, with the aim of selecting a specific mode
and measure its growth rate. In order to study the nonlinear dynamics, the flame is now
initially forced with a plate machined following a pole solution profile. For this purpose, a
front shape is computed from (3.3) with a set of 16 poles arbitrarily placed in the complex
plane and is machined on a plate (see figure 10).The obtained plate is then placed on the
top of the burner (figure 4), in order to select this shape as an initial condition for the flame
front. As in previous experiments, when the flow is stopped, the flame first enters into the
Hele-Shaw burner as a flat front and is then rapidly destabilized taking the shape selected
by the plate edge. As can be seen in figure 11, the selected pattern is clearly recognizable
during the early time of evolution. It shows that by selecting the appropriate perturbation,
it is possible to introduce some poles at desired Re(z) in the system. The imaginary parts
of poles are initially quite large (the flame front is flat in the first instants) and are rapidly
attracted toward the real axis, leading to the initially forced pattern. In the present case the
flame just missed the last crest on the right (see figure 11). This could be due to the fact
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FIGURE 10. (a) Set of poles (only upper half of the complex plane is displayed) and the
corresponding front shape described by (3.3). (b) Plate obtained by laser beam machining from
the front shape described above. This plate is used to print initial perturbations on the front.

FIGURE 11. Successive fronts obtained in the first instant of propagation. Starting from a flat
front, the flame is rapidly destabilized, taking the shape selected by the plate. On the last front
the imposed pattern is clearly recognizable. (Fronts have been artificially shifted to distinguish
each time of evolution. Time between each front dt = 2 ms.)

that the last two poles on the right of the plate are probably too close to each other and
have merged before being attracted enough toward the real axis. However, thanks to this
experimental procedure, we demonstrate that it is possible to impose an analytical initial
condition for the flame front and to study its evolution in time. It allows us to study the
complex nonlinear trajectories in a controlled way and to assess their repeatability.

3.8. Experimental repeatability
Several experiments are repeated with the same analytical initial condition (a typical
evolution of the flame is displayed in figure 17a). Their evolutions are compared by
focusing on the crests trajectories. The analysis starts when the forced crests become
visible (≈0.156 s after the flow has been stopped). The crest trajectories of the 15 initial
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FIGURE 12. Crest trajectories comparison of the 15 initial crests for 10 different runs of the
same experiment (each colour/symbol correspond to a different run). The crest trajectories go
from top to bottom in 0.25 s (≈10 × tσ ). Time between each point of a trajectory dt = 4 ms.
The crests’ trajectories are reproducible in the first time of propagation (upper half-part of the
figure). Then new crest creations (visible by sudden directional change in the trajectories) are
responsible for the scattering of trajectories (d–g) and (k,l) in the bottom half-part of the figure.

crests are then compared for 10 different runs of this experiment (figure 12). The forcing
method appears to be very efficient. The initial crest locations are almost the same for
the 10 different runs. Moreover, their evolution looks extremely reproducible during a
time much larger than the typical time of the instability ≈10tσ . In order to quantify the
similarities in trajectories, we compute the mean trajectory as

x i
mean(t) = 1

10

10∑
k=1

x i
k(t),

yi
mean(t) = 1

10

10∑
k=1

yi
k(t),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.12)

where (xk(t), yk(t)) are the coordinates of the trajectories at time t, for the run number k,
and i is the trajectory index. The error on the positions εk(t) is then computed by comparing
crest positions at each run to their mean

εk(t) = 1
15

(o)∑
i=(a)

√(
x i

k(t) − x i
mean(t)

)2 + (
yi

k(t) − yi
mean(t)

)2
. (3.13)

As shown in figure 13, the error on crest position follows an exponential growth.
However, some peaks can be observed in the course of time, these local maxima in the
error correspond to crest merging instants. Indeed, just before merging, the crests are
moving fast and a small difference in the merging time induces a great difference in the
distances. The analysis of the error growth curve allows us to quantify the repeatability
of the flame dynamics by computing the Lyapunov exponent. For this purpose, each εk(t)
growth curve is non-dimensionalized by the initial error and a mean non-dimensional error
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FIGURE 13. The ε evolution in the course of time for each of the 10 runs. Panel (a) shows
lin–lin scale; (b) semilog scale. One can observe some peaks which correspond to the cusp
merging instants. Nevertheless, despite these peaks the error follows an exponential growth.

ε̃mean is computed as

ε̃mean(t) = 1
10

10∑
k=1

εk(t)
εk(t = 0)

. (3.14)

An exponential function eλt is then fitted on these data. This procedure allows us to
obtain the Lyapunov exponent λ (see figure 14). Here, the best fit is found to be λ = 8 s−1

corresponding to a Lyapunov horizon of 1/λ = 0.125 s where λ has to be compared with
σM ≈ 60 s−1. The flame dynamics can thus be described as a purely deterministic process
on times much larger than the typical Darrieus–Landau time, in the fully nonlinear regime,
up to the Lyapunov horizon. Far beyond this horizon, the pattern is chaotic and external
noise plays an important role. In the following, by comparing the flame evolution to the
one given by pole dynamics, we will show that (3.4) is relevant to describe our experiments
on times shorter than 1/λ. Later in time, the flame must be described statistically.

3.9. Comparison of analytical and experimental poles trajectories
Equation (3.1) is an exact solution of the flame-front problem in the limit γ → 0. This
assumption can be considered as a crude one regarding a real flame (Kazakov & Liberman
2002b). However, as previously shown by Searby, Truffaut & Joulin (2001), (3.1) is
relevant if the parameters involved in the equation are carefully chosen. Here, following
the phenomenological extension of (3.1) to arbitrary values of γ proposed by Joulin &
Cambray (1992), we keep the MS model in its standard form (3.1) but using the exact uA,
σM and kc parameters obtained from experimental measurements.

The exact σM and kc values for our experiments are those previously obtained in § 3.1.
A front is then extracted by image processing from an experimental capture, at early time
(0.156 s) (see figure 15). Then, following the procedure introduced in Almarcha et al.
(2018) and providing the σM and kc values determined in § 3.1, a pole solution (3.3) is fitted
on the experimental front, by searching for the pole positions zn = Re(zn) + iIm(zn) and
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FIGURE 14. Evolution of the mean non-dimensionalized error in the course of time. An
exponential is fitted on these data in order to determine the Lyapunov exponent of the system.
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FIGURE 15. Comparison of the forcing plate profile (black line and black dots) with the
experimental front (grey circles) and its best pole decomposition (red line and red dots) obtained
by a Levenberg–Marquardt fitting algorithm. The amplitude has been multiplied by a factor of 5
for the experimental front and the fitted solution. The nearest poles to the real axis are responsible
for crests at same abscissa on the front, whereas the further are flattening the larger cells.

the amplitude A that minimizes the error in a least square sense (see figure 15 (redline)).
The first thing to note is that, although the plate profile is a 16 poles solution, we have
not been able to fit the experimental front with only 16 poles. A minimum of 19 poles has
been necessary to obtain the convergence of our Levenberg–Marquardt fitting algorithm.
It explains the presence of three large imaginary part poles (figure 15). As they are far
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FIGURE 16. Pole trajectories (time goes from light to dark) obtained from integration of (3.4),
starting from the fitted pole solution (figure 15 (red dots)). Total time evolution is 0.25 s.

from the real axis these three exceeding poles are not associated with the presence of
crests but are just flattening the largest cells. Their possible influence in the dynamics
will be discussed later. This solution and its corresponding poles (figure 15 (red)) are
then compared with the plate profile used to force the initial condition (figure 15 (blue)).
As can be seen, the Re(zn) positions of the 15 nearest poles to the real axis (figure 15
(red dots)) are almost identical to the expected poles positions (figure 15 (blue dots)).
However, one can note that their imaginary parts, Im(zn), are substantially larger (≈5×)
than those associated with the plate profile. As a consequence, the profile on the plate
is more cusped than the flame profile. This difference can be adjusted with the distance
between the plate and the initial anchored inverted-V flame. The closer the plate, the more
pronounced are the cusps in the initial flame profile. To summarize, the plate method
allows us to introduce some poles at given Re(z) positions but with low control on their
Im(z) location. Moreover, in § 3.7, we argued that the two last crests on the right-hand side
of the forced solution could have merged in one (crest (o)) due to the merging of the two
corresponding poles before they have been attracted toward the real axis. This statement
is actually corroborated by the fitted solution, where two poles form a pile at the (o) crest
position.

Since an accurate pole decomposition of the experimental front has been obtained,
the dynamics described by (3.4) can now be compared with the experimental evolution.
For this purpose, starting from the fitted solution (figure 15 (red dots)), the system of
ordinary differential equations (3.4), is numerically integrated thanks to a fourth-order
Runge–Kutta algorithm. This integration gives the pole trajectories in the complex plane
(figure 16). At each instant of the evolution, the flame front is then obtained from the
current position of the poles using (3.3). The resulting flame-front evolution is shown in
figure 17(c). The latter is compared with the evolution given by MS pseudo differential
equation (PDE) integration (3.1) (figure 17b), starting from the initial experimental front.
The evolution given by the pole dynamics and the one given by MS PDE are nearly
identical. This observation attests to the quality of the fit realized in figure 15. Moreover,
these two evolutions obtained from the MS model agree well with the experimental one
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(a) (b) (c) (e) ( f ) (g) (h) (i) ( j) (k) (l) (m) (n) (o)(d )

(a) (b) (c) (e) ( f ) (g) (h) (i) ( j) (k) (l) (m) (n) (o)(d )
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(a)

(b)

(c)

FIGURE 17. Comparison between experimental evolution of a propane–air flame ϕ = 0.8
and the corresponding evolution given by the MS PDE and by pole dynamics. (a) Typical
experimental evolution obtained by forcing an initial condition using the pole profiled plate
method. (b) Corresponding evolution given by MS PDE, starting from the initial experimental
front. (c) Corresponding evolution given by pole dynamics, starting from the pole solution
corresponding to the initial experimental front. Flame goes from top to bottom in 0.25 s. Time
between each front dt = 4 ms.
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Nonlinear dynamics of premixed flames 903 A17-21

during, approximately, the half-part of the plot (≈0.125 s). This typical time corresponds
to the Lyapunov horizon determined in § 3.8. Beyond this characteristic time the system
loses memory of the initial condition and become unpredictable.

During the first half-part of the evolution, the 15 poles associated with crests are first
attracted toward the real axis (figure 16), leading to a more cusped front (see figure 17).
Then, due to the horizontal interaction, they attract each other, pilling up at same abscissas.
This process is the mechanism responsible for the merging of crests observed in the
experiments.

During the second half-part of the propagation, the crests trajectories described by pole
dynamics are diverging from the experimental ones. This is actually due to the already
mentioned issue of new cusp creation. Looking at figure 17, one can observe two crest
creations (pointed out by arrows). These new cusps are responsible for the disparity in
crest trajectories, observed in the previous section (see figure 12). As quoted before, these
new crests may come from poles originally far from the real axis that have been attracted
toward the real axis (see figure 7), or by an external forcing responsible for the injection of
new poles in the system. However, if the latter is true, one can note that these new crests
are appearing always in the same zone for the 10 experimental runs considered in the
present paper (see figure 12). Then, if an external noise is responsible for the appearance
of these new crests, it means that the flame possesses regions that are more sensitive to
noise than others, otherwise new crests come from poles which were initially present. In
that case, one can ask about the three exceeding poles in the fitted initial solution. We
can postulate three different interpretations for their presence: (i) the pole decomposition
(3.3) is a too simplistic description regarding real flames and therefore we have not been
able to fit the flame with just one pole at each crest; (ii) the exceeding poles have been
embedded by an external source of noise during the first instant of propagation; (iii) the
plate forcing method is not accurate enough and inserted some undesirable poles. These
exceeding singularities could be responsible for the formation of new crests observed in
the experiments. However, to make new crests, these poles should be attracted toward the
real axis and it is obviously not what is predicted by (3.4) (see figure 16). The additional
poles are rapidly spurned to ±i∞, and never lead to the generation of new crests (see
evolution on figure 17). Indeed for the present case, Λ/λc = 1/ν = 21.4, corresponding
to an optimal number of poles of Nopt = 11 (see Thual et al. 1985). Therefore, initially,
there are eight poles in excess that have to be pushed away from the real axis. This
explains why these poles are not attracted toward the real axis. Nevertheless, some key
features such as gravity or heat loss effects are not taken into account in the MS model
and may be responsible for slight modifications in the pole dynamics, eventually leading
to the attraction of exceeding poles toward the real axis. Yet, the latter remark is purely
speculative as until now no pole description that takes gravity effects into account has
been obtained.

As presumed, the generation of new crest is a key component in the flame dynamics and
is responsible for the non-repeatability of the crest trajectories, and thus to the failure of a
pole dynamics forecast after some time of evolution.

4. Late-time evolution

4.1. Expected cell size distribution
As shown in the previous section, the deterministic stage of large-scale flames ends
after the Lyapunov horizon 1/λ, when new crests creations arise. The dynamics is then
sensitive to external forcing (e.g. thermal noise, residual turbulence or vibrations) or
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(xl, yl)

(xr, yr)

d
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dd1 dd2
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FIGURE 18. (a) Typical measure of a cell on a propane–air flame ϕ = 0.8. Field of view:
30 mm. (b) Cell of size dc giving birth to two daughter cells of size dd1 and dd2 by splitting.

to self-generated large-scale perturbations, and must be studied as a stochastic process.
As explained in Cambray et al. (1994), when a cell gets sufficiently large, a new crest
appears and splits the cell in two. As a result, instead of continuously growing up to
the size of the domain of propagation, the mean cell size saturates to a stationary value
that decreases when the forcing noise intensity increases. Moreover, when changing the
properties of the reacting gas, the mean cell size is also expected to vary. We focus here
on the distribution of the cells sizes around the mean. As the problem is composed of two
competing phenomena, the new crests generation that dominates on large cells, and the
crest coalescence that dominates at small scale, we can expect a stationary distribution
as demonstrated in Escobedo, Mischler & Ricard (2005). Assuming that the cells split
at random, the tail of the distribution (for large cells where fragmentation dominates) is
expected to have an exponential decay

p (d 
 〈d〉) ∝ e−d. (4.1)

At small scales, the coalescence of cusps dominates and is described by (3.9) so that the
probability of occurrence of each scale is proportional to its lifetime during the kinematic
coalescence process. This lifetime is inversely proportional to the rate of variation of the
size in time during coalescence, namely dd/dt = −32σM/k2

cd according to (3.9), so that

p (d � 〈d〉) ∝ k2
c

32σM
d. (4.2)

The whole distribution is expected to respect the two conditions, (4.1) and (4.2), and
therefore to follow a gamma distribution (Villermaux & Duplat 2003) as introduced in
Almarcha et al. (2018),

p
(

x = d
〈d〉

)
= 4

Γ (2)
x e−2x . (4.3)

In order to compare this theoretical prediction for the cell size distribution, we carried
out both numerical and laboratory experiments. Both for the fronts extracted from
numerical simulations and those extracted from experimental images, crest positions are
localized by way of a continuous wavelet transform method (Du, Kibbe & Lin 2006).
The cell size distribution is then computed by measuring the distance between each crest,
d = √

(xr − xl)2 + ( yr − yl)2 (see figure 18).
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4.1.1. Numerical experiments
The numerical experiments are performed in the MS framework to allow large-scale

flame simulations for a limited cost. The non-dimensional Sivashinsky equation (3.11)
is integrated by way of Fourier pseudospectral method (Giada, Giacometti & Rossi
2002), starting from a flat front with small amplitude white noise and periodic boundary
conditions. The integration in time is performed by way of the finite difference method
with a semi-implicit scheme (forward/backward Euler). The simulations are carried out
over a large time t 
 tσ in order to have a large statistical sampling to compute the cell
size distribution. As stated before, the emergence of new crests are related to a sensitivity
to external perturbative noise which can be round-off errors, for instance. In order to test
the influence of the noise intensity on the cell size distribution, we integrated the following
forced MS equation (pseudospectral method domain of width Λ = 2π with 2048 Fourier
modes and time step Δt = 10−5):

Φτ + 1
2Φ

2
X = νΦXX + I (Φ, X) + η(x, t), (4.4)

with η(x, t) a Gaussian white noise probability density function

f (η) = 1

s
√

2π
exp

(
− η2

2s2

)
. (4.5)

The cell size distribution is then computed following the procedure described earlier,
from simulations with different noise intensities. The corresponding results are plotted in
figure 19. One can see that even if the noise intensity has a strong influence on the mean
cell size, the non-dimensional distribution is not affected and is perfectly matching the
expected law (4.3)

4.1.2. Experiments in the Hele-Shaw burner
The experiments are performed in the apparatus described in § 2 using the experimental

procedure described in § 2.1. The high-speed Photron camera (field of view 50 cm ×
50 cm) is placed between y = 75 and y = 125 cm under the top of the burner, in order
to be far from the first instants of propagation and reach fully developed dynamics, and
to be far from the closed end of the burner (to avoid confinement effects on the unburned
gas side). The experiments are performed with propane–air mixtures for a large range
of equivalence ratios (0.8 < ϕ < 1.3). For each mixture the experiments are repeated
approximately 30 times in order to have a large statistical sample (≈104 occurrences for
each mixture). Moreover, the acquisition frame rate 1/tframe of the high-speed camera is
adjusted in order to be large enough with respect to the observed dynamics tframe ≈ 0.5tσ .
The flame fronts are extracted from these images using the procedure described in § 2.4.

The results obtained numerically and experimentally are presented in figure 20. First,
by comparing with growth rate measurements in Al Sarraf et al. (2018a) and Al Sarraf
et al. (2018b), one can note that, as first observed by Markstein (1949), the mean cell size
〈d〉 is much larger than the most unstable wavelength λmax (〈d〉 ≈ 5λmax ) predicted by the
linear theory. Furthermore, due to thermodiffusive properties of the C3H8–air mixture,
〈d〉 is noticeably decreasing when the equivalence ratio is increased (figure 20a–c).
However, despite the variations of the mean size with the equivalence ratio, all the cell size
distributions collapse on a same curve when non-dimensionalized by the mean cell size
〈d〉 (see figure 20d–f ). This self-similar property is a common feature of a Smoluchowski
aggregation process (Swift & Friedlander 1964; Hidy 1965; Friedlander & Wang 1966;
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FIGURE 19. Cell size distributions computed from forced MS simulations (see (4.4)) on a
domain of width Λ = 2π with periodic boundary conditions and 2048 Fourier modes and
time step Δt = 10−5. For all the simulations only the noise intensity is varied, the unstable
mode number is fixed to 1/ν = 200. (a) Dimensional cell size distribution lin–lin scale.
(b) Dimensional cell size distribution semilog scale. (c) Dimensional cell size distribution
log–log scale. (d) Non-dimensional cell size distribution lin–lin scale. (e) Non-dimensional cell
size distribution semilog scale. ( f ) Non-dimensional cell size distribution log–log scale.

Fournier & Laurençot 2005). However, although the experimental distributions all
collapse on the same curve, one can note a significant lack of large cells regarding the
cell size distribution obtained numerically and the theoretical distribution given by (4.3).
As this discrepancy concerns lengths much larger than the mean, we can expect that the
splitting mechanism is different in the numerics and in the experiments. We can expect
that the experimental large-scale cells are relatively more prone to split than the numerical
ones. In order to confirm this tendency, we identify the new crest appearance and measure
the size dc just before cells split (see figure 18), either from experimental or numerical
fronts. The distribution of the cells that split is reported in figure 21(b). Of course, such
a distribution is linked to the probability of presence of each cell in figure 21(a). In
particular, few cells are splitting for sizes d/〈d〉 > 3 mainly because very few of these
big cells are present along the flame front. In order to determine the natural tendency for
each cell to break depending on their size, we divide the distribution in figure 21(b) by
the distribution in figure 21(a) to obtain figure 21(c). The result is related to the lifetime
expectation or conversely, to the probability per unit time for a specific cell to break when
it is of size d, which according to Bayes’ theorem (Bayes, Price & Canton 1763; Laplace
1774) is given by

Pd(c) = Pc(d)P(c)
P(d)

, (4.6)

with Pc(x = d ∈ [a, b]) = ∫ b
a fc(x) dx the probability that a cell splits given it is of size d,

P(c) the probability of splitting and P(x = d ∈ [a, b]) = ∫ b
a f (x) dx the probability for a
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FIGURE 20. Experimental cell size distributions for propane–air flame at different equivalence
ratio compared with theoretical and numerical ones. (a) Dimensional cell size distribution lin–lin
scale. (b) Dimensional cell size distribution semilog scale. (c) Mean cell size evolution with
equivalence ratio. (d) Non-dimensional cell size distribution lin–lin scale. (e) Non-dimensional
cell size distribution semilog scale. ( f ) Non-dimensional cell size distribution log–log scale.
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FIGURE 21. Cell splitting statistics. (a) Non-dimensional cell size probability density function
for experimental and numerical (MS) fronts. (b) Probability density function of cell size which
splits. (c) Probability to split per time unit for a given cell of size d, as a function of d.

cell to be d in size, giving

⇔ Pd(c) = fc(d)P(c)
f (d)

. (4.7)

This quantity is displayed in the last plot of figure 21. The difference, between
experimental and numerical results, in the way external perturbations affect cell splitting is
now made very clear. Indeed, for Sivashinsky simulations, the probability of splitting for a
given cell of size d exhibits a linear growth with d, which is compatible with a probability
of breaking, per unit length, which is constant. This particular property is the signature
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of a random splitting mechanism along the flame front. Conversely, for experimental
flames, the probability grows faster than linearly with cell size, showing that a cell is more
sensitive to noise when it becomes larger. This characteristic reveals the presence of a
mechanism, acting specifically on large cells, that breaks the random splitting hypothesis.
A probable candidate is the gravity field that may flatten the largest cells by a buoyancy
effect and make them more sensitive to noise. Another candidate is the heat loss on the
glass plates behind the flame that may decrease the Darrieus–Landau effect for large cells
and especially cells much larger than the cooling length. The analysis of these effects shall
be addressed in a forthcoming study.

5. Conclusion

For nearly one hundred and fifty years premixed flames have been known to exhibit a
cellular pattern. Despite many attempts to characterize theoretically and experimentally
their evolution and scalings, there was no robust and complete mechanism to explain
the properties and the evolution of such a pattern. As the combustion process involves a
complex reactive fluid dynamics with strong density gradients, the major part of the studies
has tried to tackle the question with the help of simplified models, by considering the
flame as a gasdynamic discontinuity, between two flows of different densities (Frankel &
Sivashinsky 1982; Matalon & Matkowsky 1982; Pelce & Clavin 1982). In this framework
much effort has been made to obtain an equation for this interface in a closed form
(i.e. in a form involving only quantities defined on the flame front) (Sivashinsky 1977;
Sivashinsky & Clavin 1987; Joulin & Cambray 1992; Bychkov 1998; Bychkov & Kleev
1999; Bychkov, Kovalev & Liberman1999; Kazakov & Liberman 2002a,b; Kazakov
2005a,b; Joulin, El-Rabii & Kazakov 2008; El-Rabii, Joulin & Kazakov 2010; Assier &
Wu 2014). However, to obtain such an equation is an extremely intricate mathematical
problem because it requires solving the whole flow both ahead and behind the flame
front. Therefore, to obtain such an equation generally requires some strong assumptions.
One of them consists in developing all the quantities involved in the problem in the
small expansion limit. Despite such a crude assumption, the obtained equation was
already known for years to reproduce, qualitatively well, the essential features of flame
dynamics observed in experiments. Moreover, the obtained nonlinear equation admits
pole solutions, which make the dynamics analytically tractable. However, until now there
was no experimental evidence of its validity on fully developed nonlinear stages. In most
experimental facilities used previously the flame front consisted of a three-dimensional
reaction sheet, and the analysis of the front properties is an extremely difficult task.

In this study we use a simplified apparatus that constrains the dynamics to two
dimensions only, and despite the heat and momentum losses induced by the confined
geometry, the flame dynamics remains of the same nature as in three-dimensional
geometries. Thus, the flame-front analysis is greatly simplified, and its description is
more accurate. For instance, the experimental tracking of two crests merging has been
successfully compared with an expected analytical model of d2 law.

In addition, we used an improved version of a technique recently introduced by Al Sarraf
et al. (2018a) where a forcing plate at the top of the burner creates a wrinkling of the flame
front. Using a plate machined by laser-cutting, we are now able to print perturbations
on the flame front, and to impose precisely the position of the crests that will develop.
Thanks to this method, the experimental repeatability has been studied, by performing the
experiments several times from the same forced initial condition. The largest Lyapunov
exponent of the system has been computed by analysing these experiments. It allows us to
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identify the characteristic time (the Lyapunov horizon), beyond which the flame dynamics
is no longer predictable. When the initially imposed perturbation is an analytic solution
of the MS model (i.e. a pole solution), we demonstrated that it is possible to impose the
whole analytic nonlinear trajectory to the flame front for times as late as a decade further
than the linear growth time. It is a great demonstration of the astonishing accuracy of the
pole description.

Later in time the external perturbations play an important role. Moreover, the front is
prone to develop large slopes, therefore the MS model is valid locally only. Nevertheless,
we have highlighted that for the statistically stationary late-time dynamics, the elementary
pole attraction is still ruling the pattern through an aggregation process combined with a
fragmentation process. This fragmentation is inducing the large cells statistic decay. In the
case of the MS equation forced with additive white noise at random, a gamma distribution
was obtained whatever the noise intensity. In the experiments, a faster decrease of the
distribution was obtained, expressing that large cells have an enhanced tendency to break,
certainly due to gravity or heat loss effects.

Finally, a perspective opened by this study is to extend the present work to
three-dimensional flames. Here again, as the analysis of three-dimensional experimental
flames is intricate, numerics seems to be the best way to achieve it. In the MS framework, it
has been shown that because of the nature of the nonlinear term involved in the MS PDE,
the dynamics in x and y directions are completely independent (Denet 2007), therefore
the analysis carried out in this paper is still valid. However, the x and y dynamics should
be coupled for finite γ values. To investigate this question, the recent extension of the
fully nonlinear model introduced in Rastigejev & Matalon (2006b) to three-dimensional
geometry (Patyal & Matalon 2018) is really promising for large-scale flame dynamics
analysis.
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